esp-idf/components/bootloader_support/src/bootloader_clock_init.c

147 lines
8.2 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/chip_revision.h"
#include "hal/efuse_hal.h"
#if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32P4 && !CONFIG_IDF_TARGET_ESP32C5 &&! CONFIG_IDF_TARGET_ESP32C61 // TODO: IDF-5645
#include "soc/rtc_cntl_reg.h"
#else
#include "soc/lp_wdt_reg.h"
#include "soc/lp_timer_reg.h"
#include "soc/lp_analog_peri_reg.h"
#include "soc/pmu_reg.h"
#endif
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32C5
#include "hal/clk_tree_ll.h"
#endif
#include "esp_rom_sys.h"
#include "esp_rom_uart.h"
__attribute__((weak)) void bootloader_clock_configure(void)
{
// ROM bootloader may have put a lot of text into UART0 FIFO.
// Wait for it to be printed.
// This is not needed on power on reset, when ROM bootloader is running at
// 40 MHz. But in case of TG WDT reset, CPU may still be running at >80 MHZ,
// and will be done with the bootloader much earlier than UART FIFO is empty.
esp_rom_output_tx_wait_idle(0);
/* Set CPU to a higher certain frequency. Keep other clocks unmodified. */
int cpu_freq_mhz = CPU_CLK_FREQ_MHZ_BTLD;
#if CONFIG_IDF_TARGET_ESP32
/* On ESP32 rev 0, switching to 80/160 MHz if clock was previously set to
* 240 MHz may cause the chip to lock up (see section 3.5 of the errata
* document). For rev. 0, switch to 240 instead if it has been enabled
* previously.
*/
if (!ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 100) &&
clk_ll_cpu_get_freq_mhz_from_pll() == CLK_LL_PLL_240M_FREQ_MHZ) {
cpu_freq_mhz = 240;
}
#endif
if (esp_rom_get_reset_reason(0) != RESET_REASON_CPU0_SW || rtc_clk_apb_freq_get() < APB_CLK_FREQ) {
rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
clk_cfg.cpu_freq_mhz = cpu_freq_mhz;
#if CONFIG_IDF_TARGET_ESP32C5
// TODO: [ESP32C5] IDF-9009 Check whether SOC_RTC_SLOW_CLK_SRC_RC_SLOW can be used on C5 MP
// RC150K can't do calibrate on ESP32C5MPW so not use it
clk_cfg.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC32K;
#else
// Use RTC_SLOW clock source sel register field's default value, RC_SLOW, for 2nd stage bootloader
// RTC_SLOW clock source will be switched according to Kconfig selection at application startup
clk_cfg.slow_clk_src = rtc_clk_slow_src_get();
if (clk_cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_INVALID) {
clk_cfg.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
}
#endif
//TODO: [ESP32C61] IDF-9274, basic rtc support
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61
// TODO: IDF-5781 Some of esp32c6 SOC_RTC_FAST_CLK_SRC_XTAL_D2 rtc_fast clock has timing issue
// Force to use SOC_RTC_FAST_CLK_SRC_RC_FAST since 2nd stage bootloader
clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_RC_FAST;
#else
// Use RTC_FAST clock source sel register field's default value, XTAL_DIV, for 2nd stage bootloader
// RTC_FAST clock source will be switched to RC_FAST at application startup
clk_cfg.fast_clk_src = rtc_clk_fast_src_get();
if (clk_cfg.fast_clk_src == SOC_RTC_FAST_CLK_SRC_INVALID) {
clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_XTAL_DIV;
}
#endif
rtc_clk_init(clk_cfg);
}
/* As a slight optimization, if 32k XTAL was enabled in sdkconfig, we enable
* it here. Usually it needs some time to start up, so we amortize at least
* part of the start up time by enabling 32k XTAL early.
* App startup code will wait until the oscillator has started up.
*/
#if CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
if (!rtc_clk_32k_enabled()) {
rtc_clk_32k_bootstrap(CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES);
}
#endif // CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
// TODO: IDF-8938 Need refactor! Does not belong to clock configuration.
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61
#if CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61
#define LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG LP_ANA_LP_INT_ENA_REG
#define LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA LP_ANA_BOD_MODE0_LP_INT_ENA
#define LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG LP_ANA_LP_INT_CLR_REG
#define LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR LP_ANA_BOD_MODE0_LP_INT_CLR
#endif
// CLR ENA
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
CLEAR_PERI_REG_MASK(LP_TIMER_LP_INT_ENA_REG, LP_TIMER_MAIN_TIMER_LP_INT_ENA); /* MAIN_TIMER */
CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
// SET CLR
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
SET_PERI_REG_MASK(LP_TIMER_LP_INT_CLR_REG, LP_TIMER_MAIN_TIMER_LP_INT_CLR); /* MAIN_TIMER */
SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
#elif CONFIG_IDF_TARGET_ESP32H2
// CLR ENA
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
// SET CLR
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_WAKEUP_INT_CLR); /* SLP_REJECT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_SLEEP_REJECT_INT_CLR); /* SLP_WAKEUP */
#elif CONFIG_IDF_TARGET_ESP32P4
// CLR ENA
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
CLEAR_PERI_REG_MASK(LP_TIMER_LP_INT_ENA_REG, LP_TIMER_MAIN_TIMER_LP_INT_ENA); /* MAIN_TIMER */
CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_INT_ENA_REG, LP_ANALOG_PERI_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
// SET CLR
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
SET_PERI_REG_MASK(LP_TIMER_LP_INT_CLR_REG, LP_TIMER_MAIN_TIMER_LP_INT_CLR); /* MAIN_TIMER */
SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_INT_CLR_REG); /* BROWN_OUT */
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
#else
REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX);
#endif
}