mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
189 lines
6.8 KiB
C
189 lines
6.8 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sdkconfig.h"
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include "inttypes.h"
|
|
#include "esp_log.h"
|
|
#include "esp_attr.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "unity.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "esp_private/esp_psram_io.h"
|
|
#include "esp_psram.h"
|
|
#include "esp_private/esp_psram_extram.h"
|
|
#include "esp_flash.h"
|
|
#include "esp_partition.h"
|
|
|
|
__attribute__((unused)) const static char *TAG = "PSRAM";
|
|
|
|
TEST_CASE("test psram heap allocable", "[psram]")
|
|
{
|
|
size_t largest_size = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
|
|
ESP_LOGI(TAG, "largest size is %zu", largest_size);
|
|
|
|
uint32_t *ext_buffer = (uint32_t *)heap_caps_calloc(largest_size, 1, MALLOC_CAP_SPIRAM);
|
|
TEST_ASSERT(ext_buffer);
|
|
|
|
intptr_t start = (intptr_t)ext_buffer;
|
|
intptr_t end = (intptr_t)ext_buffer + largest_size;
|
|
ESP_LOGI(TAG, "test ext buffer start addr is 0x%"PRIxPTR", end addr is 0x%"PRIxPTR, start, end);
|
|
TEST_ASSERT(esp_psram_check_ptr_addr((void *)start) && esp_psram_check_ptr_addr((void *)end));
|
|
|
|
for (int i = 0; i < largest_size / sizeof(uint32_t); i++) {
|
|
ext_buffer[i] = (i + 1) ^ 0xaaaaaaaa;
|
|
}
|
|
|
|
for (int i = 0; i < largest_size / sizeof(uint32_t); i++) {
|
|
TEST_ASSERT(ext_buffer[i] == ((i + 1) ^ 0xaaaaaaaa));
|
|
}
|
|
|
|
free(ext_buffer);
|
|
}
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS && CONFIG_SPIRAM_RODATA
|
|
#include "esp_partition.h"
|
|
#include "driver/gptimer.h"
|
|
#include "esp_rom_spiflash.h"
|
|
|
|
#define SECTOR_LEN 4096
|
|
#define TEST_NUM 10
|
|
#define TEST_BUF {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
|
|
|
|
static uint32_t s_timer_cb_exe_times;
|
|
static const uint8_t s_test_buf[TEST_NUM] = TEST_BUF;
|
|
|
|
static const esp_partition_t *s_get_partition(void)
|
|
{
|
|
//Find the "storage1" partition defined in `partitions.csv`
|
|
const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage1");
|
|
if (!result) {
|
|
ESP_LOGE(TAG, "Can't find the partition, please define it correctly in `partitions.csv`");
|
|
abort();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool NOINLINE_ATTR s_test_rodata(gptimer_handle_t timer, const gptimer_alarm_event_data_t *edata, void *user_ctx)
|
|
{
|
|
s_timer_cb_exe_times ++;
|
|
uint8_t cmp_buf[TEST_NUM] = TEST_BUF;
|
|
TEST_ASSERT(memcmp(cmp_buf, s_test_buf, TEST_NUM) == 0);
|
|
|
|
return false;
|
|
}
|
|
|
|
TEST_CASE("test spi1 flash operation after putting .text and .rodata into psram", "[psram]")
|
|
{
|
|
//Get the partition used for SPI1 erase operation
|
|
const esp_partition_t *part = s_get_partition();
|
|
ESP_LOGI(TAG, "found partition '%s' at offset 0x%"PRIx32" with size 0x%"PRIx32, part->label, part->address, part->size);
|
|
//Erase whole region
|
|
TEST_ESP_OK(esp_flash_erase_region(part->flash_chip, part->address, part->size));
|
|
|
|
gptimer_handle_t gptimer = NULL;
|
|
gptimer_config_t timer_config = {
|
|
.resolution_hz = 1 * 1000 * 1000,
|
|
.clk_src = GPTIMER_CLK_SRC_DEFAULT,
|
|
.direction = GPTIMER_COUNT_UP,
|
|
};
|
|
TEST_ESP_OK(gptimer_new_timer(&timer_config, &gptimer));
|
|
|
|
gptimer_alarm_config_t alarm_config = {
|
|
.reload_count = 0,
|
|
.alarm_count = 10, // 10us
|
|
.flags.auto_reload_on_alarm = true,
|
|
};
|
|
TEST_ESP_OK(gptimer_set_alarm_action(gptimer, &alarm_config));
|
|
|
|
gptimer_event_callbacks_t cbs = {
|
|
.on_alarm = s_test_rodata,
|
|
};
|
|
TEST_ESP_OK(gptimer_register_event_callbacks(gptimer, &cbs, NULL));
|
|
|
|
esp_rom_spiflash_result_t ret;
|
|
uint32_t start = part->address;
|
|
ESP_LOGI(TAG, "test data partition: 0x%"PRIx32, start);
|
|
uint32_t sector_num = start / SECTOR_LEN;
|
|
|
|
TEST_ESP_OK(gptimer_enable(gptimer));
|
|
TEST_ESP_OK(gptimer_start(gptimer));
|
|
|
|
ret = esp_rom_spiflash_erase_sector(sector_num);
|
|
if (ret != ESP_ROM_SPIFLASH_RESULT_OK) {
|
|
ESP_LOGE(TAG, "erase fail!");
|
|
TEST_ASSERT(false);
|
|
}
|
|
|
|
TEST_ESP_OK(gptimer_stop(gptimer));
|
|
TEST_ASSERT(s_timer_cb_exe_times > 0);
|
|
printf("timer callback runs %"PRId32" times\n", s_timer_cb_exe_times);
|
|
|
|
ESP_LOGI(TAG, "Finish");
|
|
TEST_ESP_OK(gptimer_disable(gptimer));
|
|
TEST_ESP_OK(gptimer_del_timer(gptimer));
|
|
}
|
|
#endif //CONFIG_SPIRAM_FETCH_INSTRUCTIONS && CONFIG_SPIRAM_RODATA
|
|
|
|
TEST_CASE("test psram unaligned access", "[psram]")
|
|
{
|
|
size_t largest_size = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
|
ESP_LOGI(TAG, "largest size is %zu", largest_size);
|
|
|
|
uint8_t *ext_buffer = (uint8_t *)heap_caps_calloc(largest_size, 1, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
|
for (int i = 0; i < largest_size; i++) {
|
|
ext_buffer[i] = i & 0xff;
|
|
}
|
|
|
|
for (int i = 0; i < largest_size - 4; i += 4) {
|
|
|
|
uint8_t *ptr_base = (uint8_t *)(ext_buffer + i);
|
|
|
|
for (int j = 1; j < 4; j++) {
|
|
uint8_t *unaligned_ptr = (uint8_t *)(ptr_base + j);
|
|
ESP_LOGV(TAG, "i is %d, j is %d, unaligned_ptr addr is %p", i, j, unaligned_ptr);
|
|
|
|
uint8_t val_8bit = *unaligned_ptr;
|
|
ESP_LOGV(TAG, "i is %d, j is %d, val_8bit val is 0x%"PRIx8, i, j, val_8bit);
|
|
uint8_t first_byte = (i + j) & 0xff;
|
|
uint8_t expected_val_8bit = first_byte;
|
|
TEST_ASSERT(val_8bit == expected_val_8bit);
|
|
|
|
/**
|
|
* If the vaddr doesn't support unaligned access, below codes will generate `LoadStoreAlignment` error.
|
|
*
|
|
* This is because below lines includes 16-bit load and 32-bit load:
|
|
* - l16ui
|
|
* - l32i.n
|
|
*
|
|
* Whereas we use an `add.n` to adding an offset (from 0 to 3) to the original buffer address.
|
|
*
|
|
* Therefore we get unaligned access
|
|
*/
|
|
|
|
uint16_t val_16bit = *(uint16_t *)unaligned_ptr;
|
|
ESP_LOGV(TAG, "i is %d, j is %d, val_16bit val is 0x%"PRIx16, i, j, val_16bit);
|
|
uint32_t val_32bit = *(uint32_t *)unaligned_ptr;
|
|
ESP_LOGV(TAG, "i is %d, j is %d, val_32bit val is 0x%"PRIx32, i, j, val_32bit);
|
|
|
|
uint8_t second_byte = ((i + j) & 0xff) + 1;
|
|
uint8_t third_byte = ((i + j) & 0xff) + 2;
|
|
uint8_t fourth_byte = ((i + j) & 0xff) + 3;
|
|
|
|
uint16_t expected_val_16bit = (second_byte << 8) | first_byte;
|
|
ESP_LOGV(TAG, "i is %d, j is %d, expected_val_16bit val is 0x%"PRIx16, i, j, expected_val_16bit);
|
|
TEST_ASSERT(val_16bit == expected_val_16bit);
|
|
uint32_t expected_val_32bit = (fourth_byte << 24) | (third_byte << 16) | (second_byte << 8) | first_byte;
|
|
ESP_LOGV(TAG, "i is %d, j is %d, expected_val_32bit val is 0x%" PRIx32, i, j, expected_val_32bit);
|
|
TEST_ASSERT(val_32bit == expected_val_32bit);
|
|
}
|
|
}
|
|
|
|
heap_caps_free(ext_buffer);
|
|
}
|