309 lines
11 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include <inttypes.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_check.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "esp_memory_utils.h"
#include "esp_dma_utils.h"
#include "esp_private/esp_dma_utils.h"
#include "esp_private/esp_cache_private.h"
#include "soc/soc_caps.h"
#include "hal/hal_utils.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#include "esp_cache.h"
static const char *TAG = "dma_utils";
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
esp_err_t esp_dma_split_buffer_to_aligned(void *input_buffer, size_t input_buffer_len, void *stash_buffer, size_t stash_buffer_len, size_t split_alignment, dma_buffer_split_array_t *align_array)
{
esp_err_t ret = ESP_OK;
ESP_RETURN_ON_FALSE(align_array && input_buffer && input_buffer_len && stash_buffer && split_alignment && !(split_alignment & (split_alignment - 1)
&& (stash_buffer_len >= 2 * split_alignment)), ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(!((uintptr_t)stash_buffer % split_alignment), ESP_ERR_INVALID_ARG, TAG, "extra buffer is not aligned");
// calculate head_overflow_len
size_t head_overflow_len = (uintptr_t)input_buffer % split_alignment;
head_overflow_len = head_overflow_len ? split_alignment - head_overflow_len : 0;
ESP_LOGD(TAG, "head_addr:%p split_alignment:%zu head_overflow_len:%zu", input_buffer, split_alignment, head_overflow_len);
// calculate tail_overflow_len
size_t tail_overflow_len = ((uintptr_t)input_buffer + input_buffer_len) % split_alignment;
ESP_LOGD(TAG, "tail_addr:%p split_alignment:%zu tail_overflow_len:%zu", input_buffer + input_buffer_len - tail_overflow_len, split_alignment, tail_overflow_len);
uint32_t extra_buf_count = 0;
input_buffer = (uint8_t*)input_buffer;
stash_buffer = (uint8_t*)stash_buffer;
align_array->buf.head.recovery_address = input_buffer;
align_array->buf.head.aligned_buffer = stash_buffer + split_alignment * extra_buf_count++;
align_array->buf.head.length = head_overflow_len;
align_array->buf.body.recovery_address = input_buffer + head_overflow_len;
align_array->buf.body.aligned_buffer = input_buffer + head_overflow_len;
align_array->buf.body.length = input_buffer_len - head_overflow_len - tail_overflow_len;
align_array->buf.tail.recovery_address = input_buffer + input_buffer_len - tail_overflow_len;
align_array->buf.tail.aligned_buffer = stash_buffer + split_alignment * extra_buf_count++;
align_array->buf.tail.length = tail_overflow_len;
// special handling when input_buffer length is no more than buffer alignment
if(head_overflow_len >= input_buffer_len || tail_overflow_len >= input_buffer_len)
{
align_array->buf.head.length = input_buffer_len ;
align_array->buf.body.length = 0 ;
align_array->buf.tail.length = 0 ;
}
for(int i = 0; i < 3; i++) {
if(!align_array->aligned_buffer[i].length) {
align_array->aligned_buffer[i].aligned_buffer = NULL;
align_array->aligned_buffer[i].recovery_address = NULL;
}
}
return ret;
}
esp_err_t esp_dma_merge_aligned_buffers(dma_buffer_split_array_t *align_array)
{
esp_err_t ret = ESP_OK;
ESP_RETURN_ON_FALSE(align_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// only need to copy the head and tail buffer
if(align_array->buf.head.length) {
memcpy(align_array->buf.head.recovery_address, align_array->buf.head.aligned_buffer, align_array->buf.head.length);
}
if(align_array->buf.tail.length) {
memcpy(align_array->buf.tail.recovery_address, align_array->buf.tail.aligned_buffer, align_array->buf.tail.length);
}
return ret;
}
esp_err_t esp_dma_capable_malloc(size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size)
{
ESP_RETURN_ON_FALSE_ISR(dma_mem_info && out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
size_t alignment_bytes = 0;
//dma align
size_t dma_alignment_bytes = dma_mem_info->dma_alignment_bytes;
//cache align
int cache_flags = 0;
size_t cache_alignment_bytes = 0;
int heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_DMA;
if (dma_mem_info->extra_heap_caps & MALLOC_CAP_SPIRAM) {
cache_flags |= MALLOC_CAP_SPIRAM;
heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_SPIRAM;
/**
* This is a workaround because we don't have `MALLOC_CAP_DMA | MALLOC_CAP_SPIRAM`
* match when using heap_cap related allocations.
*/
heap_caps &= ~MALLOC_CAP_DMA;
}
// Return value unused if asserts are disabled
esp_err_t __attribute((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes);
assert(ret == ESP_OK);
//Get the least common multiple of two alignment
alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes);
//malloc
size = ALIGN_UP_BY(size, alignment_bytes);
void *ptr = heap_caps_aligned_alloc(alignment_bytes, size, heap_caps);
ESP_RETURN_ON_FALSE_ISR(ptr, ESP_ERR_NO_MEM, TAG, "Not enough heap memory");
*out_ptr = ptr;
if (actual_size) {
*actual_size = size;
}
return ESP_OK;
}
esp_err_t esp_dma_capable_calloc(size_t calloc_num, size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size)
{
esp_err_t ret = ESP_FAIL;
size_t size_bytes = 0;
bool ovf = false;
ovf = __builtin_mul_overflow(calloc_num, size, &size_bytes);
ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow");
void *ptr = NULL;
ret = esp_dma_capable_malloc(size_bytes, dma_mem_info, &ptr, actual_size);
if (ret == ESP_OK) {
memset(ptr, 0, size_bytes);
*out_ptr = ptr;
}
return ret;
}
static bool s_buf_in_region(const void *ptr, size_t size, esp_dma_buf_location_t location)
{
bool found = false;
if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) {
found = true;
}
} else if (location == ESP_DMA_BUF_LOCATION_PSRAM) {
#if SOC_PSRAM_DMA_CAPABLE
if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) {
found = true;
}
#endif
}
return found;
}
static inline bool s_is_buf_aligned(intptr_t ptr, size_t alignment)
{
return (ptr % alignment == 0);
}
bool esp_dma_is_buffer_alignment_satisfied(const void *ptr, size_t size, esp_dma_mem_info_t dma_mem_info)
{
assert(ptr);
bool found = false;
for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) {
if (s_buf_in_region(ptr, size, i)) {
found = true;
break;
}
}
if (!found) {
return false;
}
size_t alignment_bytes = 0;
//dma align
size_t dma_alignment_bytes = dma_mem_info.dma_alignment_bytes;
//cache align
int cache_flags = 0;
size_t cache_alignment_bytes = 0;
if (esp_ptr_external_ram(ptr)) {
cache_flags |= MALLOC_CAP_SPIRAM;
}
// Return value unused if asserts are disabled
esp_err_t __attribute__((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes);
assert(ret == ESP_OK);
//Get the least common multiple of two alignment
alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes);
bool is_aligned = s_is_buf_aligned((intptr_t)ptr, alignment_bytes) && s_is_buf_aligned((intptr_t)size, alignment_bytes);
return is_aligned;
}
//-----------------------Deprecated APIs-----------------------//
esp_err_t s_legacy_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
{
ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
int heap_caps = 0;
if (flags & ESP_DMA_MALLOC_FLAG_PSRAM) {
heap_caps |= MALLOC_CAP_SPIRAM;
} else {
heap_caps |= MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL;
}
esp_dma_mem_info_t dma_mem_info = {
.extra_heap_caps = heap_caps,
.dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment
};
ESP_RETURN_ON_ERROR_ISR(esp_dma_capable_malloc(size, &dma_mem_info, out_ptr, actual_size), TAG, "failed to do malloc");
return ESP_OK;
}
esp_err_t esp_dma_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
{
return s_legacy_malloc(size, flags, out_ptr, actual_size);
}
esp_err_t esp_dma_calloc(size_t n, size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
{
ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
esp_err_t ret = ESP_FAIL;
size_t size_bytes = 0;
bool ovf = false;
ovf = __builtin_mul_overflow(n, size, &size_bytes);
ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow");
void *ptr = NULL;
ret = s_legacy_malloc(size_bytes, flags, &ptr, actual_size);
if (ret == ESP_OK) {
memset(ptr, 0, size_bytes);
*out_ptr = ptr;
}
return ret;
}
static bool s_buf_in_region_legacy(const void *ptr, size_t size, esp_dma_buf_location_t location, int *heap_caps)
{
bool found = false;
if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) {
*heap_caps = MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL;
found = true;
}
} else if (location == ESP_DMA_BUF_LOCATION_PSRAM) {
#if SOC_PSRAM_DMA_CAPABLE
if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) {
*heap_caps = MALLOC_CAP_SPIRAM;
found = true;
}
#endif
}
return found;
}
bool esp_dma_is_buffer_aligned(const void *ptr, size_t size, esp_dma_buf_location_t location)
{
assert(ptr);
bool found = false;
int heap_caps = 0;
if (location == ESP_DMA_BUF_LOCATION_AUTO) {
for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) {
if (s_buf_in_region_legacy(ptr, size, i, &heap_caps)) {
found = true;
break;
}
}
} else if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_INTERNAL, &heap_caps);
} else {
found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_PSRAM, &heap_caps);
}
if (!found) {
return false;
}
esp_dma_mem_info_t dma_mem_info = {
.extra_heap_caps = heap_caps,
.dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment
};
return esp_dma_is_buffer_alignment_satisfied(ptr, size, dma_mem_info);
}