esp-idf/components/driver/adc.c

521 lines
17 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_log.h"
#include "soc/rtc.h"
#include "rtc_io.h"
#include "adc.h"
#include "dac.h"
#include "sys/lock.h"
#include "driver/gpio.h"
#include "adc1_i2s_private.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dac_hal.h"
#define ADC_MAX_MEAS_NUM_DEFAULT (255)
#define ADC_MEAS_NUM_LIM_DEFAULT (1)
#define SAR_ADC_CLK_DIV_DEFUALT (2)
#define DIG_ADC_OUTPUT_FORMAT_DEFUALT (ADC_DIG_FORMAT_12BIT)
#define DIG_ADC_ATTEN_DEFUALT (ADC_ATTEN_DB_11)
#define DIG_ADC_BIT_WIDTH_DEFUALT (ADC_WIDTH_BIT_12)
#define ADC_CHECK_RET(fun_ret) ({ \
if (fun_ret != ESP_OK) { \
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
return ESP_FAIL; \
} \
})
static const char *ADC_TAG = "ADC";
#define ADC_CHECK(a, str, ret_val) ({ \
if (!(a)) { \
ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
} \
})
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
/*
In ADC2, there're two locks used for different cases:
1. lock shared with app and WIFI:
when wifi using the ADC2, we assume it will never stop,
so app checks the lock and returns immediately if failed.
2. lock shared between tasks:
when several tasks sharing the ADC2, we want to guarantee
all the requests will be handled.
Since conversions are short (about 31us), app returns the lock very soon,
we use a spinlock to stand there waiting to do conversions one by one.
adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
*/
//prevent ADC2 being used by wifi and other tasks at the same time.
static _lock_t adc2_wifi_lock;
//prevent ADC2 being used by tasks (regardless of WIFI)
static portMUX_TYPE adc2_spinlock = portMUX_INITIALIZER_UNLOCKED;
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_i2s_lock;
/*---------------------------------------------------------------
ADC Common
---------------------------------------------------------------*/
void adc_power_always_on(void)
{
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_ON);
ADC_EXIT_CRITICAL();
}
void adc_power_on(void)
{
ADC_ENTER_CRITICAL();
/* The power FSM controlled mode saves more power, while the ADC noise may get increased. */
#ifndef CONFIG_ADC_FORCE_XPD_FSM
/* Set the power always on to increase precision. */
adc_hal_set_power_manage(ADC_POWER_SW_ON);
#else
/* Use the FSM to turn off the power while not used to save power. */
if (adc_hal_get_power_manage() != ADC_POWER_BY_FSM) {
adc_hal_set_power_manage(ADC_POWER_SW_ON);
}
#endif
ADC_EXIT_CRITICAL();
}
void adc_power_off(void)
{
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_OFF);
ADC_EXIT_CRITICAL();
}
esp_err_t adc_set_clk_div(uint8_t clk_div)
{
ADC_ENTER_CRITICAL();
adc_hal_set_clk_div(clk_div);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)
{
ADC_CHECK(src < ADC_I2S_DATA_SRC_MAX, "ADC i2s data source error", ESP_ERR_INVALID_ARG);
ADC_ENTER_CRITICAL();
adc_hal_dig_set_data_source(src);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
return ESP_OK;
}
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_output_invert(ADC_NUM_1, inv_en);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_output_invert(ADC_NUM_1, inv_en);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
{
ADC_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
adc_hal_rtc_set_output_format(ADC_NUM_1, bits);
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_rtc_set_output_format(ADC_NUM_2, bits);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/* this function should be called in the critical section. */
static int adc_convert(adc_ll_num_t adc_n, int channel)
{
return adc_hal_convert(adc_n, channel);
}
/*-------------------------------------------------------------------------------------
* ADC I2S
*------------------------------------------------------------------------------------*/
esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
{
if (adc_unit & ADC_UNIT_1) {
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_1)), "ADC1 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_2)), "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG);
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
}
adc_ll_pattern_table_t adc1_pattern[1];
adc_ll_pattern_table_t adc2_pattern[1];
adc_hal_dig_config_t dig_cfg = {
.conv_limit_en = ADC_MEAS_NUM_LIM_DEFAULT,
.conv_limit_num = ADC_MAX_MEAS_NUM_DEFAULT,
.clk_div = SAR_ADC_CLK_DIV_DEFUALT,
.format = DIG_ADC_OUTPUT_FORMAT_DEFUALT,
.conv_mode = (adc_ll_convert_mode_t)adc_unit,
};
if (adc_unit & ADC_UNIT_1) {
adc1_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
adc1_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
adc1_pattern[0].channel = channel;
dig_cfg.adc1_pattern_len = 1;
dig_cfg.adc1_pattern = adc1_pattern;
}
if (adc_unit & ADC_UNIT_2) {
adc2_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT;
adc2_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT;
adc2_pattern[0].channel = channel;
dig_cfg.adc2_pattern_len = 1;
dig_cfg.adc2_pattern = adc2_pattern;
}
ADC_ENTER_CRITICAL();
adc_hal_init();
adc_hal_dig_controller_config(&dig_cfg);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/*-------------------------------------------------------------------------------------
* ADC1
*------------------------------------------------------------------------------------*/
esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc_gpio_init(ADC_UNIT_1, channel);
/* Workaround: Disable the synchronization operation function of ADC1 and DAC.
If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
dac_hal_rtc_sync_by_adc(false);
adc_hal_set_atten(ADC_NUM_1, channel, atten);
return ESP_OK;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
adc_hal_output_invert(ADC_NUM_1, true);
return ESP_OK;
}
esp_err_t adc1_i2s_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
_lock_acquire( &adc1_i2s_lock );
ESP_LOGD( ADC_TAG, "i2s mode takes adc1 lock." );
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_ON);
/* switch SARADC into DIG channel */
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc1_adc_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
_lock_acquire( &adc1_i2s_lock );
ADC_ENTER_CRITICAL();
/* switch SARADC into RTC channel. */
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc1_lock_release(void)
{
ADC_CHECK((uint32_t *)adc1_i2s_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
_lock_release( &adc1_i2s_lock );
return ESP_OK;
}
int adc1_get_raw(adc1_channel_t channel)
{
uint16_t adc_value;
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
adc1_adc_mode_acquire();
adc_power_on();
ADC_ENTER_CRITICAL();
/* disable other peripherals. */
adc_hal_hall_disable();
/* currently the LNA is not open, close it by default. */
adc_hal_amp_disable();
/* set controller */
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
/* start conversion */
adc_value = adc_convert(ADC_NUM_1, channel);
ADC_EXIT_CRITICAL();
adc1_lock_release();
return adc_value;
}
int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead
{
return adc1_get_raw(channel);
}
void adc1_ulp_enable(void)
{
adc_power_on();
ADC_ENTER_CRITICAL();
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP);
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
/* disable other peripherals. */
adc_hal_hall_disable();
adc_hal_amp_disable();
ADC_EXIT_CRITICAL();
}
/*---------------------------------------------------------------
ADC2
---------------------------------------------------------------*/
esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
esp_err_t adc2_wifi_acquire(void)
{
/* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
_lock_acquire( &adc2_wifi_lock );
ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
return ESP_OK;
}
esp_err_t adc2_wifi_release(void)
{
ADC_CHECK((uint32_t *)adc2_wifi_lock != NULL, "wifi release called before acquire", ESP_ERR_INVALID_STATE );
_lock_release( &adc2_wifi_lock );
ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
return ESP_OK;
}
static esp_err_t adc2_pad_init(adc2_channel_t channel)
{
gpio_num_t gpio_num = 0;
ADC_CHECK_RET(adc2_pad_get_io_num(channel, &gpio_num));
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
return ESP_OK;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
adc2_pad_init(channel);
portENTER_CRITICAL( &adc2_spinlock );
//lazy initialization
//avoid collision with other tasks
if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) {
//try the lock, return if failed (wifi using).
portEXIT_CRITICAL( &adc2_spinlock );
return ESP_ERR_TIMEOUT;
}
adc_hal_set_atten(ADC_NUM_2, channel, atten);
_lock_release( &adc2_wifi_lock );
portEXIT_CRITICAL( &adc2_spinlock );
return ESP_OK;
}
static inline void adc2_config_width(adc_bits_width_t width_bit)
{
ADC_ENTER_CRITICAL();
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_hal_output_invert(ADC_NUM_2, true);
ADC_EXIT_CRITICAL();
}
static inline void adc2_dac_disable( adc2_channel_t channel)
{
if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
dac_output_disable(DAC_CHANNEL_1);
} else if ( channel == ADC2_CHANNEL_9 ) {
dac_output_disable(DAC_CHANNEL_2);
}
}
//registers in critical section with adc1:
//SENS_SAR_START_FORCE_REG,
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
uint16_t adc_value = 0;
ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
//in critical section with whole rtc module
adc_power_on();
//avoid collision with other tasks
portENTER_CRITICAL(&adc2_spinlock);
//lazy initialization
//try the lock, return if failed (wifi using).
if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) {
portEXIT_CRITICAL( &adc2_spinlock );
return ESP_ERR_TIMEOUT;
}
//disable other peripherals
#ifdef CONFIG_ADC_DISABLE_DAC
adc2_dac_disable(channel);
#endif
// set controller
// in critical section with whole rtc module
// because the PWDET use the same registers, place it here.
adc2_config_width(width_bit);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);
//start converting
adc_value = adc_convert(ADC_NUM_2, channel);
_lock_release( &adc2_wifi_lock );
portEXIT_CRITICAL(&adc2_spinlock);
*raw_out = (int)adc_value;
return ESP_OK;
}
esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
{
adc_power_always_on(); //Select power source of ADC
if (adc_hal_vref_output(gpio) != true) {
return ESP_ERR_INVALID_ARG;
} else {
//Configure RTC gpio
rtc_gpio_init(gpio);
rtc_gpio_set_direction(gpio, RTC_GPIO_MODE_DISABLED);
rtc_gpio_pullup_dis(gpio);
rtc_gpio_pulldown_dis(gpio);
return ESP_OK;
}
}
/*---------------------------------------------------------------
HALL SENSOR
---------------------------------------------------------------*/
static int hall_sensor_get_value(void) //hall sensor without LNA
{
int hall_value;
adc_power_on();
ADC_ENTER_CRITICAL();
/* disable other peripherals. */
adc_hal_amp_disable();
adc_hal_hall_enable();
// set controller
adc_hal_set_controller( ADC_NUM_1, ADC_CTRL_RTC );
hall_value = adc_hal_hall_convert();
ADC_EXIT_CRITICAL();
return hall_value;
}
int hall_sensor_read(void)
{
adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_0);
adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_3);
adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_0);
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_0);
return hall_sensor_get_value();
}