Supported Targets | ESP32 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
---|
RMT Transmit Example -- LED Strip
(See the README.md file in the upper level 'examples' directory for more information about examples.)
Almost any waveform can be generated by RMT peripheral, as long as a proper encoder is implemented. In this example, the simple callback RMT encoder is used to convert RGB pixels into format that can be recognized by hardware.
This example shows how to drive an addressable LED strip WS2812 by implementing a callback that can be used by the simple callback RMT encoder.
How to Use Example
Hardware Required
- A development board with any supported Espressif SOC chip (see
Supported Targets
table above) - A USB cable for Power supply and programming
- A WS2812 LED strip
Connection :
--- 5V
|
+
RMT_LED_STRIP_GPIO_NUM +------ +---|>| (WS2812 LED strip)
DI +
|
--- GND
The GPIO number used in this example can be changed according to your board, by the macro RMT_LED_STRIP_GPIO_NUM
defined in the source file. The number of LEDs can be changed as well by EXAMPLE_LED_NUMBERS
.
Build and Flash
Run idf.py -p PORT flash monitor
to build, flash and monitor the project.
(To exit the serial monitor, type Ctrl-]
.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
Console Output
I (302) cpu_start: Starting scheduler on PRO CPU.
I (0) cpu_start: Starting scheduler on APP CPU.
I (323) example: Create RMT TX channel
I (343) example: Create simple callback-based encoder
I (353) example: Start LED rainbow chase
After you seeing this log, you should see a rainbow chasing demonstration pattern. To change the chasing speed, you can update the EXAMPLE_ANGLE_INC_FRAME
value in source file. To change the density of colors, you can change EXAMPLE_ANGLE_INC_LED
in the same file.
Troubleshooting
For any technical queries, please open an issue on GitHub. We will get back to you soon.