mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
619 lines
22 KiB
C
619 lines
22 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <esp_types.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_pm.h"
|
|
#include "esp_check.h"
|
|
#include "sys/lock.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/timers.h"
|
|
#include "freertos/ringbuf.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "esp_private/adc_share_hw_ctrl.h"
|
|
#include "esp_private/sar_periph_ctrl.h"
|
|
#include "hal/adc_types.h"
|
|
#include "hal/adc_hal.h"
|
|
#include "hal/dma_types.h"
|
|
#include "hal/adc_hal_common.h"
|
|
|
|
#include "driver/gpio.h"
|
|
#include "driver/adc_types_legacy.h"
|
|
|
|
//For calibration
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp_efuse_rtc_table.h"
|
|
#elif SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
#include "esp_efuse_rtc_calib.h"
|
|
#endif
|
|
//For DMA
|
|
#if SOC_GDMA_SUPPORTED
|
|
#include "esp_private/gdma.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "hal/spi_types.h"
|
|
#include "esp_private/spi_common_internal.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
#include "driver/i2s_types.h"
|
|
#include "soc/i2s_periph.h"
|
|
#include "esp_private/i2s_platform.h"
|
|
#endif
|
|
|
|
static const char *ADC_TAG = "ADC";
|
|
|
|
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
|
|
|
|
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
|
|
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
|
|
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
|
|
|
|
#define INTERNAL_BUF_NUM 5
|
|
|
|
/*---------------------------------------------------------------
|
|
Digital Controller Context
|
|
---------------------------------------------------------------*/
|
|
typedef struct adc_digi_context_t {
|
|
uint8_t *rx_dma_buf; //dma buffer
|
|
adc_hal_dma_ctx_t hal; //hal context
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
spi_host_device_t spi_host; //ADC uses this SPI DMA
|
|
spi_dma_ctx_t *spi_dma_ctx; //spi_dma context
|
|
intr_handle_t intr_hdl; //Interrupt handler
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
i2s_port_t i2s_host; //ADC uses this I2S DMA
|
|
intr_handle_t intr_hdl; //Interrupt handler
|
|
#endif
|
|
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
|
|
intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel
|
|
bool ringbuf_overflow_flag; //1: ringbuffer overflow
|
|
bool driver_start_flag; //1: driver is started; 0: driver is stoped
|
|
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
|
|
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
|
|
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
|
|
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
|
|
adc_hal_digi_ctrlr_cfg_t hal_digi_ctrlr_cfg; //Hal digital controller configuration
|
|
esp_pm_lock_handle_t pm_lock; //For power management
|
|
} adc_digi_context_t;
|
|
|
|
static adc_digi_context_t *s_adc_digi_ctx = NULL;
|
|
#ifdef CONFIG_PM_ENABLE
|
|
//Only for deprecated API
|
|
extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
/*---------------------------------------------------------------
|
|
ADC Continuous Read Mode (via DMA)
|
|
---------------------------------------------------------------*/
|
|
//Function to address transaction
|
|
static bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
|
|
|
|
#if SOC_GDMA_SUPPORTED
|
|
static bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
|
|
#else
|
|
static void adc_dma_intr_handler(void *arg);
|
|
#endif
|
|
|
|
static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
|
|
{
|
|
assert(adc_unit < SOC_ADC_PERIPH_NUM);
|
|
uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
|
|
return adc_channel_io_map[adc_n][adc_channel];
|
|
}
|
|
|
|
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
uint64_t gpio_mask = 0;
|
|
uint32_t n = 0;
|
|
int8_t io = 0;
|
|
|
|
while (channel_mask) {
|
|
if (channel_mask & 0x1) {
|
|
io = adc_digi_get_io_num(adc_unit, n);
|
|
if (io < 0) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
gpio_mask |= BIT64(io);
|
|
}
|
|
channel_mask = channel_mask >> 1;
|
|
n++;
|
|
}
|
|
|
|
gpio_config_t cfg = {
|
|
.pin_bit_mask = gpio_mask,
|
|
.mode = GPIO_MODE_DISABLE,
|
|
};
|
|
ret = gpio_config(&cfg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t adc_digi_deinitialize(void)
|
|
{
|
|
if (!s_adc_digi_ctx) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (s_adc_digi_ctx->driver_start_flag != 0) {
|
|
ESP_LOGE(ADC_TAG, "The driver is not stopped");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (s_adc_digi_ctx->ringbuf_hdl) {
|
|
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
|
|
s_adc_digi_ctx->ringbuf_hdl = NULL;
|
|
}
|
|
|
|
#if CONFIG_PM_ENABLE
|
|
if (s_adc_digi_ctx->pm_lock) {
|
|
esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
|
|
}
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
free(s_adc_digi_ctx->rx_dma_buf);
|
|
free(s_adc_digi_ctx->hal.rx_desc);
|
|
free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
|
|
gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
esp_intr_free(s_adc_digi_ctx->intr_hdl);
|
|
spicommon_dma_chan_free(s_adc_digi_ctx->spi_dma_ctx);
|
|
spicommon_periph_free(s_adc_digi_ctx->spi_host);
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
esp_intr_free(s_adc_digi_ctx->intr_hdl);
|
|
i2s_platform_release_occupation(s_adc_digi_ctx->i2s_host);
|
|
#endif
|
|
free(s_adc_digi_ctx);
|
|
s_adc_digi_ctx = NULL;
|
|
|
|
periph_module_disable(PERIPH_SARADC_MODULE);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_RETURN_ON_FALSE((init_config->conv_num_each_intr % SOC_ADC_DIGI_DATA_BYTES_PER_CONV == 0), ESP_ERR_INVALID_ARG, ADC_TAG, "conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV`");
|
|
|
|
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
|
|
if (s_adc_digi_ctx == NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//ringbuffer
|
|
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
|
|
if (!s_adc_digi_ctx->ringbuf_hdl) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//malloc internal buffer used by DMA
|
|
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
|
|
if (!s_adc_digi_ctx->rx_dma_buf) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//malloc dma descriptor
|
|
uint32_t dma_desc_num_per_frame = (init_config->conv_num_each_intr + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
|
|
uint32_t dma_desc_max_num = dma_desc_num_per_frame * INTERNAL_BUF_NUM;
|
|
s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * dma_desc_max_num, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
|
|
if (!s_adc_digi_ctx->hal.rx_desc) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//malloc pattern table
|
|
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
|
|
if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
#if CONFIG_PM_ENABLE
|
|
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
//init gpio pins
|
|
if (init_config->adc1_chan_mask) {
|
|
ret = adc_digi_gpio_init(ADC_UNIT_1, init_config->adc1_chan_mask);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
}
|
|
if (init_config->adc2_chan_mask) {
|
|
ret = adc_digi_gpio_init(ADC_UNIT_2, init_config->adc2_chan_mask);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
#if SOC_GDMA_SUPPORTED
|
|
//alloc rx gdma channel
|
|
gdma_channel_alloc_config_t rx_alloc_config = {
|
|
.direction = GDMA_CHANNEL_DIRECTION_RX,
|
|
};
|
|
ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
|
|
|
|
gdma_strategy_config_t strategy_config = {
|
|
.auto_update_desc = true,
|
|
.owner_check = true
|
|
};
|
|
gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
|
|
|
|
gdma_rx_event_callbacks_t cbs = {
|
|
.on_recv_eof = adc_dma_in_suc_eof_callback
|
|
};
|
|
gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
|
|
|
|
int dma_chan;
|
|
gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
//ADC utilises SPI3 DMA on ESP32S2
|
|
bool spi_success = false;
|
|
uint32_t dma_chan = 0;
|
|
|
|
spi_success = spicommon_periph_claim(SPI3_HOST, "adc");
|
|
ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &s_adc_digi_ctx->spi_dma_ctx);
|
|
if (ret == ESP_OK) {
|
|
s_adc_digi_ctx->spi_host = SPI3_HOST;
|
|
}
|
|
if (!spi_success || (s_adc_digi_ctx->spi_host != SPI3_HOST)) {
|
|
goto cleanup;
|
|
}
|
|
dma_chan = s_adc_digi_ctx->spi_dma_ctx->rx_dma_chan.chan_id;
|
|
|
|
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(s_adc_digi_ctx->spi_host), 0, adc_dma_intr_handler,
|
|
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
//ADC utilises I2S0 DMA on ESP32
|
|
uint32_t dma_chan = 0;
|
|
ret = i2s_platform_acquire_occupation(I2S_NUM_0, "adc");
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
|
|
s_adc_digi_ctx->i2s_host = I2S_NUM_0;
|
|
ret = esp_intr_alloc(i2s_periph_signal[s_adc_digi_ctx->i2s_host].irq, 0, adc_dma_intr_handler,
|
|
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
#endif
|
|
|
|
adc_hal_dma_config_t config = {
|
|
#if SOC_GDMA_SUPPORTED
|
|
.dev = (void *)GDMA_LL_GET_HW(0),
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
.dev = (void *)SPI_LL_GET_HW(s_adc_digi_ctx->spi_host),
|
|
#elif CONFIG_IDF_TARGET_ESP32
|
|
.dev = (void *)I2S_LL_GET_HW(s_adc_digi_ctx->i2s_host),
|
|
#endif
|
|
.eof_desc_num = INTERNAL_BUF_NUM,
|
|
.eof_step = dma_desc_num_per_frame,
|
|
.dma_chan = dma_chan,
|
|
.eof_num = init_config->conv_num_each_intr / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
|
|
};
|
|
adc_hal_dma_ctx_config(&s_adc_digi_ctx->hal, &config);
|
|
|
|
//enable ADC digital part
|
|
periph_module_enable(PERIPH_SARADC_MODULE);
|
|
//reset ADC digital part
|
|
periph_module_reset(PERIPH_SARADC_MODULE);
|
|
|
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
adc_hal_calibration_init(ADC_UNIT_1);
|
|
adc_hal_calibration_init(ADC_UNIT_2);
|
|
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
|
|
return ret;
|
|
|
|
cleanup:
|
|
adc_digi_deinitialize();
|
|
return ret;
|
|
}
|
|
|
|
#if SOC_GDMA_SUPPORTED
|
|
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
|
|
{
|
|
assert(event_data);
|
|
s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
|
|
return s_adc_dma_intr(user_data);
|
|
}
|
|
#else
|
|
static IRAM_ATTR void adc_dma_intr_handler(void *arg)
|
|
{
|
|
adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
|
|
bool need_yield = false;
|
|
|
|
bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK);
|
|
if (conversion_finish) {
|
|
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
|
|
|
|
intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal);
|
|
|
|
ctx->rx_eof_desc_addr = desc_addr;
|
|
need_yield = s_adc_dma_intr(ctx);
|
|
}
|
|
|
|
if (need_yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
|
|
{
|
|
BaseType_t taskAwoken = 0;
|
|
BaseType_t ret;
|
|
adc_hal_dma_desc_status_t status = false;
|
|
uint8_t *finished_buffer = NULL;
|
|
uint32_t finished_size = 0;
|
|
|
|
while (1) {
|
|
status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &finished_buffer, &finished_size);
|
|
if (status != ADC_HAL_DMA_DESC_VALID) {
|
|
break;
|
|
}
|
|
|
|
ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, finished_buffer, finished_size, &taskAwoken);
|
|
if (ret == pdFALSE) {
|
|
//ringbuffer overflow
|
|
adc_digi_ctx->ringbuf_overflow_flag = 1;
|
|
}
|
|
}
|
|
|
|
return (taskAwoken == pdTRUE);
|
|
}
|
|
|
|
esp_err_t adc_digi_start(void)
|
|
{
|
|
|
|
if (s_adc_digi_ctx->driver_start_flag != 0) {
|
|
ESP_LOGE(ADC_TAG, "The driver is already started");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
sar_periph_ctrl_adc_continuous_power_acquire();
|
|
//reset flags
|
|
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
|
|
s_adc_digi_ctx->driver_start_flag = 1;
|
|
if (s_adc_digi_ctx->use_adc1) {
|
|
adc_lock_acquire(ADC_UNIT_1);
|
|
}
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
adc_lock_acquire(ADC_UNIT_2);
|
|
}
|
|
|
|
#if CONFIG_PM_ENABLE
|
|
// Lock APB frequency while ADC driver is in use
|
|
esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
|
|
#endif
|
|
|
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
if (s_adc_digi_ctx->use_adc1) {
|
|
adc_set_hw_calibration_code(ADC_UNIT_1, s_adc_digi_ctx->adc1_atten);
|
|
}
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
adc_set_hw_calibration_code(ADC_UNIT_2, s_adc_digi_ctx->adc2_atten);
|
|
}
|
|
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
|
|
#if SOC_ADC_ARBITER_SUPPORTED
|
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
|
adc_hal_arbiter_config(&config);
|
|
#endif //#if SOC_ADC_ARBITER_SUPPORTED
|
|
|
|
adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE);
|
|
adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE);
|
|
|
|
adc_hal_digi_init(&s_adc_digi_ctx->hal);
|
|
adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
|
|
|
|
//start conversion
|
|
adc_hal_digi_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_stop(void)
|
|
{
|
|
if (s_adc_digi_ctx->driver_start_flag != 1) {
|
|
ESP_LOGE(ADC_TAG, "The driver is already stopped");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
s_adc_digi_ctx->driver_start_flag = 0;
|
|
|
|
//disable the in suc eof intrrupt
|
|
adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
|
|
//clear the in suc eof interrupt
|
|
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
|
|
//stop ADC
|
|
adc_hal_digi_stop(&s_adc_digi_ctx->hal);
|
|
|
|
adc_hal_digi_deinit(&s_adc_digi_ctx->hal);
|
|
#if CONFIG_PM_ENABLE
|
|
if (s_adc_digi_ctx->pm_lock) {
|
|
esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
|
|
}
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
adc_lock_release(ADC_UNIT_2);
|
|
}
|
|
if (s_adc_digi_ctx->use_adc1) {
|
|
adc_lock_release(ADC_UNIT_1);
|
|
}
|
|
sar_periph_ctrl_adc_continuous_power_release();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
|
|
{
|
|
TickType_t ticks_to_wait;
|
|
esp_err_t ret = ESP_OK;
|
|
uint8_t *data = NULL;
|
|
size_t size = 0;
|
|
|
|
ticks_to_wait = timeout_ms / portTICK_PERIOD_MS;
|
|
if (timeout_ms == ADC_MAX_DELAY) {
|
|
ticks_to_wait = portMAX_DELAY;
|
|
}
|
|
|
|
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
|
|
if (!data) {
|
|
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
|
|
ret = ESP_ERR_TIMEOUT;
|
|
*out_length = 0;
|
|
return ret;
|
|
}
|
|
|
|
memcpy(buf, data, size);
|
|
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
|
|
assert((size % 4) == 0);
|
|
*out_length = size;
|
|
|
|
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
Digital controller setting
|
|
---------------------------------------------------------------*/
|
|
esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
|
|
{
|
|
if (!s_adc_digi_ctx) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
//Pattern related check
|
|
ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
for (int i = 0; i < config->pattern_num; i++) {
|
|
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
|
|
ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
|
|
}
|
|
#else
|
|
for (int i = 0; i < config->pattern_num; i++) {
|
|
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
|
|
}
|
|
#endif
|
|
ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
|
|
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
|
|
} else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
|
|
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
|
|
}
|
|
#else
|
|
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
|
|
#endif
|
|
|
|
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
|
|
s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
|
|
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
|
|
memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));
|
|
|
|
const int atten_uninitialized = 999;
|
|
s_adc_digi_ctx->adc1_atten = atten_uninitialized;
|
|
s_adc_digi_ctx->adc2_atten = atten_uninitialized;
|
|
s_adc_digi_ctx->use_adc1 = 0;
|
|
s_adc_digi_ctx->use_adc2 = 0;
|
|
for (int i = 0; i < config->pattern_num; i++) {
|
|
const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
|
|
if (pat->unit == ADC_UNIT_1) {
|
|
s_adc_digi_ctx->use_adc1 = 1;
|
|
|
|
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
|
|
s_adc_digi_ctx->adc1_atten = pat->atten;
|
|
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
} else if (pat->unit == ADC_UNIT_2) {
|
|
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
|
|
s_adc_digi_ctx->use_adc2 = 1;
|
|
|
|
if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
|
|
s_adc_digi_ctx->adc2_atten = pat->atten;
|
|
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function will be called during start up, to check that adc_continuous driver is not running along with the legacy adc_continuous driver
|
|
*/
|
|
__attribute__((constructor))
|
|
static void check_adc_continuous_driver_conflict(void)
|
|
{
|
|
// This function was declared as weak here. adc_continuous driver has one implementation.
|
|
// So if adc_continuous driver is not linked in, then `adc_continuous_new_handle` should be NULL at runtime.
|
|
extern __attribute__((weak)) esp_err_t adc_continuous_new_handle(const void *init_config, void **ret_handle);
|
|
if ((void *)adc_continuous_new_handle != NULL) {
|
|
ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
|
|
abort();
|
|
}
|
|
ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_continuous.h`");
|
|
}
|
|
|
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
/*---------------------------------------------------------------
|
|
ADC Hardware Calibration
|
|
---------------------------------------------------------------*/
|
|
static __attribute__((constructor)) void adc_hw_calibration(void)
|
|
{
|
|
//Calculate all ICode
|
|
for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
|
|
adc_hal_calibration_init(i);
|
|
for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
|
|
/**
|
|
* This may get wrong when attenuations are NOT consecutive on some chips,
|
|
* update this when bringing up the calibration on that chip
|
|
*/
|
|
adc_calc_hw_calibration_code(i, j);
|
|
#if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
|
|
/* Load the channel compensation from efuse */
|
|
for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) {
|
|
adc_load_hw_calibration_chan_compens(i, k, j);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|