esp-idf/components/driver/rmt/rmt_rx.c
morris 57879e772d feat(gdma): support channel allocator on esp32p4
There's two GDMA groups on ESP32P4, one is connected to AHB bus,
and another one is connected AXI bus.
We now have two seperate APIs for allocating DMA channels,
depends on the bus type.
2023-07-19 18:18:07 +08:00

653 lines
28 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include "sdkconfig.h"
#if CONFIG_RMT_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_log.h"
#include "esp_check.h"
#include "esp_memory_utils.h"
#include "esp_rom_gpio.h"
#include "soc/rmt_periph.h"
#include "soc/rtc.h"
#include "hal/rmt_ll.h"
#include "hal/gpio_hal.h"
#include "driver/gpio.h"
#include "driver/rmt_rx.h"
#include "rmt_private.h"
#define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
static const char *TAG = "rmt";
static esp_err_t rmt_del_rx_channel(rmt_channel_handle_t channel);
static esp_err_t rmt_rx_demodulate_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config);
static esp_err_t rmt_rx_enable(rmt_channel_handle_t channel);
static esp_err_t rmt_rx_disable(rmt_channel_handle_t channel);
static void rmt_rx_default_isr(void *args);
#if SOC_RMT_SUPPORT_DMA
static bool rmt_dma_rx_eof_cb(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
static void rmt_rx_mount_dma_buffer(dma_descriptor_t *desc_array, size_t array_size, const void *buffer, size_t buffer_size)
{
size_t prepared_length = 0;
uint8_t *data = (uint8_t *)buffer;
int dma_node_i = 0;
dma_descriptor_t *desc = NULL;
while (buffer_size > RMT_DMA_DESC_BUF_MAX_SIZE) {
desc = &desc_array[dma_node_i];
desc->dw0.suc_eof = 0;
desc->dw0.size = RMT_DMA_DESC_BUF_MAX_SIZE;
desc->dw0.length = 0;
desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc->buffer = &data[prepared_length];
desc->next = &desc_array[dma_node_i + 1];
prepared_length += RMT_DMA_DESC_BUF_MAX_SIZE;
buffer_size -= RMT_DMA_DESC_BUF_MAX_SIZE;
dma_node_i++;
}
if (buffer_size) {
desc = &desc_array[dma_node_i];
desc->dw0.suc_eof = 0;
desc->dw0.size = buffer_size;
desc->dw0.length = 0;
desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc->buffer = &data[prepared_length];
prepared_length += buffer_size;
}
desc->next = NULL; // one-off DMA chain
}
static esp_err_t rmt_rx_init_dma_link(rmt_rx_channel_t *rx_channel, const rmt_rx_channel_config_t *config)
{
gdma_channel_alloc_config_t dma_chan_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
#if SOC_GDMA_TRIG_PERIPH_RMT0_BUS == SOC_GDMA_BUS_AHB
ESP_RETURN_ON_ERROR(gdma_new_ahb_channel(&dma_chan_config, &rx_channel->base.dma_chan), TAG, "allocate RX DMA channel failed");
#endif
gdma_strategy_config_t gdma_strategy_conf = {
.auto_update_desc = true,
.owner_check = true,
};
gdma_apply_strategy(rx_channel->base.dma_chan, &gdma_strategy_conf);
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = rmt_dma_rx_eof_cb,
};
gdma_register_rx_event_callbacks(rx_channel->base.dma_chan, &cbs, rx_channel);
return ESP_OK;
}
#endif // SOC_RMT_SUPPORT_DMA
static esp_err_t rmt_rx_register_to_group(rmt_rx_channel_t *rx_channel, const rmt_rx_channel_config_t *config)
{
size_t mem_block_num = 0;
// start to search for a free channel
// a channel can take up its neighbour's memory block, so the neighbour channel won't work, we should skip these "invaded" ones
int channel_scan_start = RMT_RX_CHANNEL_OFFSET_IN_GROUP;
int channel_scan_end = RMT_RX_CHANNEL_OFFSET_IN_GROUP + SOC_RMT_RX_CANDIDATES_PER_GROUP;
if (config->flags.with_dma) {
// for DMA mode, the memory block number is always 1; for non-DMA mode, memory block number is configured by user
mem_block_num = 1;
// Only the last channel has the DMA capability
channel_scan_start = RMT_RX_CHANNEL_OFFSET_IN_GROUP + SOC_RMT_RX_CANDIDATES_PER_GROUP - 1;
rx_channel->ping_pong_symbols = 0; // with DMA, we don't need to do ping-pong
} else {
// one channel can occupy multiple memory blocks
mem_block_num = config->mem_block_symbols / SOC_RMT_MEM_WORDS_PER_CHANNEL;
if (mem_block_num * SOC_RMT_MEM_WORDS_PER_CHANNEL < config->mem_block_symbols) {
mem_block_num++;
}
rx_channel->ping_pong_symbols = mem_block_num * SOC_RMT_MEM_WORDS_PER_CHANNEL / 2;
}
rx_channel->base.mem_block_num = mem_block_num;
// search free channel and then register to the group
// memory blocks used by one channel must be continuous
uint32_t channel_mask = (1 << mem_block_num) - 1;
rmt_group_t *group = NULL;
int channel_id = -1;
for (int i = 0; i < SOC_RMT_GROUPS; i++) {
group = rmt_acquire_group_handle(i);
ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i);
portENTER_CRITICAL(&group->spinlock);
for (int j = channel_scan_start; j < channel_scan_end; j++) {
if (!(group->occupy_mask & (channel_mask << j))) {
group->occupy_mask |= (channel_mask << j);
// the channel ID should index from 0
channel_id = j - RMT_RX_CHANNEL_OFFSET_IN_GROUP;
group->rx_channels[channel_id] = rx_channel;
break;
}
}
portEXIT_CRITICAL(&group->spinlock);
if (channel_id < 0) {
// didn't find a capable channel in the group, don't forget to release the group handle
rmt_release_group_handle(group);
} else {
rx_channel->base.channel_id = channel_id;
rx_channel->base.channel_mask = channel_mask;
rx_channel->base.group = group;
break;
}
}
ESP_RETURN_ON_FALSE(channel_id >= 0, ESP_ERR_NOT_FOUND, TAG, "no free rx channels");
return ESP_OK;
}
static void rmt_rx_unregister_from_group(rmt_channel_t *channel, rmt_group_t *group)
{
portENTER_CRITICAL(&group->spinlock);
group->rx_channels[channel->channel_id] = NULL;
group->occupy_mask &= ~(channel->channel_mask << (channel->channel_id + RMT_RX_CHANNEL_OFFSET_IN_GROUP));
portEXIT_CRITICAL(&group->spinlock);
// channel has a reference on group, release it now
rmt_release_group_handle(group);
}
static esp_err_t rmt_rx_destroy(rmt_rx_channel_t *rx_channel)
{
if (rx_channel->base.intr) {
ESP_RETURN_ON_ERROR(esp_intr_free(rx_channel->base.intr), TAG, "delete interrupt service failed");
}
if (rx_channel->base.pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_delete(rx_channel->base.pm_lock), TAG, "delete pm_lock failed");
}
#if SOC_RMT_SUPPORT_DMA
if (rx_channel->base.dma_chan) {
ESP_RETURN_ON_ERROR(gdma_del_channel(rx_channel->base.dma_chan), TAG, "delete dma channel failed");
}
#endif // SOC_RMT_SUPPORT_DMA
if (rx_channel->base.group) {
// de-register channel from RMT group
rmt_rx_unregister_from_group(&rx_channel->base, rx_channel->base.group);
}
free(rx_channel);
return ESP_OK;
}
esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_handle_t *ret_chan)
{
#if CONFIG_RMT_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
rmt_rx_channel_t *rx_channel = NULL;
ESP_GOTO_ON_FALSE(config && ret_chan && config->resolution_hz, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
ESP_GOTO_ON_FALSE(GPIO_IS_VALID_GPIO(config->gpio_num), ESP_ERR_INVALID_ARG, err, TAG, "invalid GPIO number");
ESP_GOTO_ON_FALSE((config->mem_block_symbols & 0x01) == 0 && config->mem_block_symbols >= SOC_RMT_MEM_WORDS_PER_CHANNEL,
ESP_ERR_INVALID_ARG, err, TAG, "mem_block_symbols must be even and at least %d", SOC_RMT_MEM_WORDS_PER_CHANNEL);
#if !SOC_RMT_SUPPORT_DMA
ESP_GOTO_ON_FALSE(config->flags.with_dma == 0, ESP_ERR_NOT_SUPPORTED, err, TAG, "DMA not supported");
#endif // SOC_RMT_SUPPORT_DMA
size_t num_dma_nodes = 0;
if (config->flags.with_dma) {
num_dma_nodes = config->mem_block_symbols * sizeof(rmt_symbol_word_t) / RMT_DMA_DESC_BUF_MAX_SIZE + 1;
}
// malloc channel memory
uint32_t mem_caps = RMT_MEM_ALLOC_CAPS;
if (config->flags.with_dma) {
// DMA descriptors must be placed in internal SRAM
mem_caps |= MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA;
}
rx_channel = heap_caps_calloc(1, sizeof(rmt_rx_channel_t) + num_dma_nodes * sizeof(dma_descriptor_t), mem_caps);
ESP_GOTO_ON_FALSE(rx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for rx channel");
rx_channel->num_dma_nodes = num_dma_nodes;
// register the channel to group
ESP_GOTO_ON_ERROR(rmt_rx_register_to_group(rx_channel, config), err, TAG, "register channel failed");
rmt_group_t *group = rx_channel->base.group;
rmt_hal_context_t *hal = &group->hal;
int channel_id = rx_channel->base.channel_id;
int group_id = group->group_id;
// select the clock source
ESP_GOTO_ON_ERROR(rmt_select_periph_clock(&rx_channel->base, config->clk_src), err, TAG, "set group clock failed");
// reset channel, make sure the RX engine is not working, and events are cleared
portENTER_CRITICAL(&group->spinlock);
rmt_hal_rx_channel_reset(&group->hal, channel_id);
portEXIT_CRITICAL(&group->spinlock);
// When channel receives an end-maker, a DMA in_suc_eof interrupt will be generated
// So we don't rely on RMT interrupt any more, GDMA event callback is sufficient
if (config->flags.with_dma) {
#if SOC_RMT_SUPPORT_DMA
ESP_GOTO_ON_ERROR(rmt_rx_init_dma_link(rx_channel, config), err, TAG, "install rx DMA failed");
#endif // SOC_RMT_SUPPORT_DMA
} else {
// RMT interrupt is mandatory if the channel doesn't use DMA
int isr_flags = RMT_INTR_ALLOC_FLAG;
ret = esp_intr_alloc_intrstatus(rmt_periph_signals.groups[group_id].irq, isr_flags,
(uint32_t)rmt_ll_get_interrupt_status_reg(hal->regs),
RMT_LL_EVENT_RX_MASK(channel_id), rmt_rx_default_isr, rx_channel, &rx_channel->base.intr);
ESP_GOTO_ON_ERROR(ret, err, TAG, "install rx interrupt failed");
}
// set channel clock resolution
uint32_t real_div = group->resolution_hz / config->resolution_hz;
rmt_ll_rx_set_channel_clock_div(hal->regs, channel_id, real_div);
// resolution loss due to division, calculate the real resolution
rx_channel->base.resolution_hz = group->resolution_hz / real_div;
if (rx_channel->base.resolution_hz != config->resolution_hz) {
ESP_LOGW(TAG, "channel resolution loss, real=%"PRIu32, rx_channel->base.resolution_hz);
}
rmt_ll_rx_set_mem_blocks(hal->regs, channel_id, rx_channel->base.mem_block_num);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
#if SOC_RMT_SUPPORT_RX_PINGPONG
rmt_ll_rx_set_limit(hal->regs, channel_id, rx_channel->ping_pong_symbols);
// always enable rx wrap, both DMA mode and ping-pong mode rely this feature
rmt_ll_rx_enable_wrap(hal->regs, channel_id, true);
#endif
#if SOC_RMT_SUPPORT_RX_DEMODULATION
// disable carrier demodulation by default, can reenable by `rmt_apply_carrier()`
rmt_ll_rx_enable_carrier_demodulation(hal->regs, channel_id, false);
#endif
// GPIO Matrix/MUX configuration
rx_channel->base.gpio_num = config->gpio_num;
gpio_config_t gpio_conf = {
.intr_type = GPIO_INTR_DISABLE,
// also enable the input path is `io_loop_back` is on, this is useful for debug
.mode = GPIO_MODE_INPUT | (config->flags.io_loop_back ? GPIO_MODE_OUTPUT : 0),
.pull_down_en = false,
.pull_up_en = true,
.pin_bit_mask = 1ULL << config->gpio_num,
};
ESP_GOTO_ON_ERROR(gpio_config(&gpio_conf), err, TAG, "config GPIO failed");
esp_rom_gpio_connect_in_signal(config->gpio_num,
rmt_periph_signals.groups[group_id].channels[channel_id + RMT_RX_CHANNEL_OFFSET_IN_GROUP].rx_sig,
config->flags.invert_in);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->gpio_num], PIN_FUNC_GPIO);
// initialize other members of rx channel
rx_channel->base.direction = RMT_CHANNEL_DIRECTION_RX;
rx_channel->base.fsm = RMT_FSM_INIT;
rx_channel->base.hw_mem_base = &RMTMEM.channels[channel_id + RMT_RX_CHANNEL_OFFSET_IN_GROUP].symbols[0];
rx_channel->base.spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// polymorphic methods
rx_channel->base.del = rmt_del_rx_channel;
rx_channel->base.set_carrier_action = rmt_rx_demodulate_carrier;
rx_channel->base.enable = rmt_rx_enable;
rx_channel->base.disable = rmt_rx_disable;
// return general channel handle
*ret_chan = &rx_channel->base;
ESP_LOGD(TAG, "new rx channel(%d,%d) at %p, gpio=%d, res=%"PRIu32"Hz, hw_mem_base=%p, ping_pong_size=%d",
group_id, channel_id, rx_channel, config->gpio_num, rx_channel->base.resolution_hz,
rx_channel->base.hw_mem_base, rx_channel->ping_pong_symbols);
return ESP_OK;
err:
if (rx_channel) {
rmt_rx_destroy(rx_channel);
}
return ret;
}
static esp_err_t rmt_del_rx_channel(rmt_channel_handle_t channel)
{
rmt_rx_channel_t *rx_chan = __containerof(channel, rmt_rx_channel_t, base);
rmt_group_t *group = channel->group;
int group_id = group->group_id;
int channel_id = channel->channel_id;
ESP_LOGD(TAG, "del rx channel(%d,%d)", group_id, channel_id);
// recycle memory resource
ESP_RETURN_ON_ERROR(rmt_rx_destroy(rx_chan), TAG, "destroy rx channel failed");
return ESP_OK;
}
esp_err_t rmt_rx_register_event_callbacks(rmt_channel_handle_t channel, const rmt_rx_event_callbacks_t *cbs, void *user_data)
{
ESP_RETURN_ON_FALSE(channel && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(channel->direction == RMT_CHANNEL_DIRECTION_RX, ESP_ERR_INVALID_ARG, TAG, "invalid channel direction");
rmt_rx_channel_t *rx_chan = __containerof(channel, rmt_rx_channel_t, base);
#if CONFIG_RMT_ISR_IRAM_SAFE
if (cbs->on_recv_done) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_recv_done), ESP_ERR_INVALID_ARG, TAG, "on_recv_done callback not in IRAM");
}
if (user_data) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
}
#endif
rx_chan->on_recv_done = cbs->on_recv_done;
rx_chan->user_data = user_data;
return ESP_OK;
}
esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_size, const rmt_receive_config_t *config)
{
ESP_RETURN_ON_FALSE(channel && buffer && buffer_size && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(channel->direction == RMT_CHANNEL_DIRECTION_RX, ESP_ERR_INVALID_ARG, TAG, "invalid channel direction");
ESP_RETURN_ON_FALSE(channel->fsm == RMT_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "channel not in enable state");
rmt_rx_channel_t *rx_chan = __containerof(channel, rmt_rx_channel_t, base);
if (channel->dma_chan) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(buffer), ESP_ERR_INVALID_ARG, TAG, "buffer must locate in internal RAM for DMA use");
}
if (channel->dma_chan) {
ESP_RETURN_ON_FALSE(buffer_size <= rx_chan->num_dma_nodes * RMT_DMA_DESC_BUF_MAX_SIZE,
ESP_ERR_INVALID_ARG, TAG, "buffer size exceeds DMA capacity");
}
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
int channel_id = channel->channel_id;
uint32_t filter_reg_value = ((uint64_t)group->resolution_hz * config->signal_range_min_ns) / 1000000000UL;
uint32_t idle_reg_value = ((uint64_t)channel->resolution_hz * config->signal_range_max_ns) / 1000000000UL;
ESP_RETURN_ON_FALSE(filter_reg_value <= RMT_LL_MAX_FILTER_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_min_ns too big");
ESP_RETURN_ON_FALSE(idle_reg_value <= RMT_LL_MAX_IDLE_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_max_ns too big");
// fill in the transaction descriptor
rmt_rx_trans_desc_t *t = &rx_chan->trans_desc;
t->buffer = buffer;
t->buffer_size = buffer_size;
t->received_symbol_num = 0;
t->copy_dest_off = 0;
if (channel->dma_chan) {
#if SOC_RMT_SUPPORT_DMA
rmt_rx_mount_dma_buffer(rx_chan->dma_nodes, rx_chan->num_dma_nodes, buffer, buffer_size);
gdma_reset(channel->dma_chan);
gdma_start(channel->dma_chan, (intptr_t)rx_chan->dma_nodes);
#endif
}
rx_chan->mem_off = 0;
portENTER_CRITICAL(&channel->spinlock);
// reset memory writer offset
rmt_ll_rx_reset_pointer(hal->regs, channel_id);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
// set sampling parameters of incoming signals
rmt_ll_rx_set_filter_thres(hal->regs, channel_id, filter_reg_value);
rmt_ll_rx_enable_filter(hal->regs, channel_id, config->signal_range_min_ns != 0);
rmt_ll_rx_set_idle_thres(hal->regs, channel_id, idle_reg_value);
// turn on RMT RX machine
rmt_ll_rx_enable(hal->regs, channel_id, true);
portEXIT_CRITICAL(&channel->spinlock);
return ESP_OK;
}
static esp_err_t rmt_rx_demodulate_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config)
{
#if !SOC_RMT_SUPPORT_RX_DEMODULATION
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "rx demodulation not supported");
#else
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
int group_id = group->group_id;
int channel_id = channel->channel_id;
uint32_t real_frequency = 0;
if (config && config->frequency_hz) {
// carrier demodulation module works base on channel clock (this is different from TX carrier modulation mode)
uint32_t total_ticks = channel->resolution_hz / config->frequency_hz; // Note this division operation will lose precision
uint32_t high_ticks = total_ticks * config->duty_cycle;
uint32_t low_ticks = total_ticks - high_ticks;
portENTER_CRITICAL(&channel->spinlock);
rmt_ll_rx_set_carrier_level(hal->regs, channel_id, !config->flags.polarity_active_low);
rmt_ll_rx_set_carrier_high_low_ticks(hal->regs, channel_id, high_ticks, low_ticks);
portEXIT_CRITICAL(&channel->spinlock);
// save real carrier frequency
real_frequency = channel->resolution_hz / (high_ticks + low_ticks);
}
// enable/disable carrier demodulation
portENTER_CRITICAL(&channel->spinlock);
rmt_ll_rx_enable_carrier_demodulation(hal->regs, channel_id, real_frequency > 0);
portEXIT_CRITICAL(&channel->spinlock);
if (real_frequency > 0) {
ESP_LOGD(TAG, "enable carrier demodulation for channel(%d,%d), freq=%"PRIu32"Hz", group_id, channel_id, real_frequency);
} else {
ESP_LOGD(TAG, "disable carrier demodulation for channel(%d, %d)", group_id, channel_id);
}
return ESP_OK;
#endif
}
static esp_err_t rmt_rx_enable(rmt_channel_handle_t channel)
{
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
int channel_id = channel->channel_id;
// acquire power manager lock
if (channel->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(channel->pm_lock), TAG, "acquire pm_lock failed");
}
if (channel->dma_chan) {
#if SOC_RMT_SUPPORT_DMA
// enable the DMA access mode
portENTER_CRITICAL(&channel->spinlock);
rmt_ll_rx_enable_dma(hal->regs, channel_id, true);
portEXIT_CRITICAL(&channel->spinlock);
gdma_connect(channel->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_RMT, 0));
#endif // SOC_RMT_SUPPORT_DMA
} else {
portENTER_CRITICAL(&group->spinlock);
rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_RX_MASK(channel_id), true);
portEXIT_CRITICAL(&group->spinlock);
}
channel->fsm = RMT_FSM_ENABLE;
return ESP_OK;
}
static esp_err_t rmt_rx_disable(rmt_channel_handle_t channel)
{
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
int channel_id = channel->channel_id;
portENTER_CRITICAL(&channel->spinlock);
rmt_ll_rx_enable(hal->regs, channel_id, false);
portEXIT_CRITICAL(&channel->spinlock);
if (channel->dma_chan) {
#if SOC_RMT_SUPPORT_DMA
gdma_stop(channel->dma_chan);
gdma_disconnect(channel->dma_chan);
portENTER_CRITICAL(&channel->spinlock);
rmt_ll_rx_enable_dma(hal->regs, channel_id, false);
portEXIT_CRITICAL(&channel->spinlock);
#endif
} else {
portENTER_CRITICAL(&group->spinlock);
rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_RX_MASK(channel_id), false);
rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_MASK(channel_id));
portEXIT_CRITICAL(&group->spinlock);
}
// release power manager lock
if (channel->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_release(channel->pm_lock), TAG, "release pm_lock failed");
}
channel->fsm = RMT_FSM_INIT;
return ESP_OK;
}
static size_t IRAM_ATTR rmt_copy_symbols(rmt_symbol_word_t *symbol_stream, size_t symbol_num, void *buffer, size_t offset, size_t buffer_size)
{
size_t mem_want = symbol_num * sizeof(rmt_symbol_word_t);
size_t mem_have = buffer_size - offset;
size_t copy_size = MIN(mem_want, mem_have);
// do memory copy
memcpy(buffer + offset, symbol_stream, copy_size);
return copy_size;
}
static bool IRAM_ATTR rmt_isr_handle_rx_done(rmt_rx_channel_t *rx_chan)
{
rmt_channel_t *channel = &rx_chan->base;
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
uint32_t channel_id = channel->channel_id;
rmt_rx_trans_desc_t *trans_desc = &rx_chan->trans_desc;
bool need_yield = false;
rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_DONE(channel_id));
portENTER_CRITICAL_ISR(&channel->spinlock);
// disable the RX engine, it will be enabled again when next time user calls `rmt_receive()`
rmt_ll_rx_enable(hal->regs, channel_id, false);
uint32_t offset = rmt_ll_rx_get_memory_writer_offset(hal->regs, channel_id);
// sanity check
assert(offset >= rx_chan->mem_off);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_SW);
// copy the symbols to user space
size_t stream_symbols = offset - rx_chan->mem_off;
size_t copy_size = rmt_copy_symbols(channel->hw_mem_base + rx_chan->mem_off, stream_symbols,
trans_desc->buffer, trans_desc->copy_dest_off, trans_desc->buffer_size);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
portEXIT_CRITICAL_ISR(&channel->spinlock);
#if !SOC_RMT_SUPPORT_RX_PINGPONG
// for chips doesn't support ping-pong RX, we should check whether the receiver has encountered with a long frame,
// whose length is longer than the channel capacity
if (rmt_ll_rx_get_interrupt_status_raw(hal->regs, channel_id) & RMT_LL_EVENT_RX_ERROR(channel_id)) {
portENTER_CRITICAL_ISR(&channel->spinlock);
rmt_ll_rx_reset_pointer(hal->regs, channel_id);
portEXIT_CRITICAL_ISR(&channel->spinlock);
// this clear operation can only take effect after we copy out the received data and reset the pointer
rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_ERROR(channel_id));
ESP_DRAM_LOGE(TAG, "hw buffer too small, received symbols truncated");
}
#endif // !SOC_RMT_SUPPORT_RX_PINGPONG
// check whether all symbols are copied
if (copy_size != stream_symbols * sizeof(rmt_symbol_word_t)) {
ESP_DRAM_LOGE(TAG, "user buffer too small, received symbols truncated");
}
trans_desc->copy_dest_off += copy_size;
trans_desc->received_symbol_num += copy_size / sizeof(rmt_symbol_word_t);
// notify the user with receive RMT symbols
if (rx_chan->on_recv_done) {
rmt_rx_done_event_data_t edata = {
.received_symbols = trans_desc->buffer,
.num_symbols = trans_desc->received_symbol_num,
};
if (rx_chan->on_recv_done(channel, &edata, rx_chan->user_data)) {
need_yield = true;
}
}
return need_yield;
}
#if SOC_RMT_SUPPORT_RX_PINGPONG
static bool IRAM_ATTR rmt_isr_handle_rx_threshold(rmt_rx_channel_t *rx_chan)
{
rmt_channel_t *channel = &rx_chan->base;
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
uint32_t channel_id = channel->channel_id;
rmt_rx_trans_desc_t *trans_desc = &rx_chan->trans_desc;
rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_THRES(channel_id));
portENTER_CRITICAL_ISR(&channel->spinlock);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_SW);
// copy the symbols to user space
size_t copy_size = rmt_copy_symbols(channel->hw_mem_base + rx_chan->mem_off, rx_chan->ping_pong_symbols,
trans_desc->buffer, trans_desc->copy_dest_off, trans_desc->buffer_size);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
portEXIT_CRITICAL_ISR(&channel->spinlock);
// check whether all symbols are copied
if (copy_size != rx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t)) {
ESP_DRAM_LOGE(TAG, "received symbols truncated");
}
trans_desc->copy_dest_off += copy_size;
trans_desc->received_symbol_num += copy_size / sizeof(rmt_symbol_word_t);
// update the hw memory offset, where stores the next RMT symbols to copy
rx_chan->mem_off = rx_chan->ping_pong_symbols - rx_chan->mem_off;
return false;
}
#endif // SOC_RMT_SUPPORT_RX_PINGPONG
static void IRAM_ATTR rmt_rx_default_isr(void *args)
{
rmt_rx_channel_t *rx_chan = (rmt_rx_channel_t *)args;
rmt_channel_t *channel = &rx_chan->base;
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
uint32_t channel_id = channel->channel_id;
bool need_yield = false;
uint32_t status = rmt_ll_rx_get_interrupt_status(hal->regs, channel_id);
#if SOC_RMT_SUPPORT_RX_PINGPONG
// RX threshold interrupt
if (status & RMT_LL_EVENT_RX_THRES(channel_id)) {
if (rmt_isr_handle_rx_threshold(rx_chan)) {
need_yield = true;
}
}
#endif // SOC_RMT_SUPPORT_RX_PINGPONG
// RX end interrupt
if (status & RMT_LL_EVENT_RX_DONE(channel_id)) {
if (rmt_isr_handle_rx_done(rx_chan)) {
need_yield = true;
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
#if SOC_RMT_SUPPORT_DMA
static size_t IRAM_ATTR rmt_rx_get_received_symbol_num_from_dma(dma_descriptor_t *desc)
{
size_t received_bytes = 0;
while (desc) {
received_bytes += desc->dw0.length;
desc = desc->next;
}
received_bytes = ALIGN_UP(received_bytes, sizeof(rmt_symbol_word_t));
return received_bytes / sizeof(rmt_symbol_word_t);
}
static bool IRAM_ATTR rmt_dma_rx_eof_cb(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
bool need_yield = false;
rmt_rx_channel_t *rx_chan = (rmt_rx_channel_t *)user_data;
rmt_channel_t *channel = &rx_chan->base;
rmt_group_t *group = channel->group;
rmt_hal_context_t *hal = &group->hal;
rmt_rx_trans_desc_t *trans_desc = &rx_chan->trans_desc;
uint32_t channel_id = channel->channel_id;
portENTER_CRITICAL_ISR(&channel->spinlock);
// disable the RX engine, it will be enabled again in the next `rmt_receive()`
rmt_ll_rx_enable(hal->regs, channel_id, false);
portEXIT_CRITICAL_ISR(&channel->spinlock);
if (rx_chan->on_recv_done) {
rmt_rx_done_event_data_t edata = {
.received_symbols = trans_desc->buffer,
.num_symbols = rmt_rx_get_received_symbol_num_from_dma(rx_chan->dma_nodes),
};
if (rx_chan->on_recv_done(channel, &edata, rx_chan->user_data)) {
need_yield = true;
}
}
return need_yield;
}
#endif // SOC_RMT_SUPPORT_DMA