esp-idf/components/fatfs/vfs/vfs_fat.c
Angus Gratton 365e3fd685 fatfs: Remove esp_vfs_fat_unregister()
Deprecated in ESP-IDF V2.0
2019-09-19 18:49:37 +10:00

959 lines
28 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include "esp_vfs.h"
#include "esp_log.h"
#include "ff.h"
#include "diskio_impl.h"
typedef struct {
char fat_drive[8]; /* FAT drive name */
char base_path[ESP_VFS_PATH_MAX]; /* base path in VFS where partition is registered */
size_t max_files; /* max number of simultaneously open files; size of files[] array */
_lock_t lock; /* guard for access to this structure */
FATFS fs; /* fatfs library FS structure */
char tmp_path_buf[FILENAME_MAX+3]; /* temporary buffer used to prepend drive name to the path */
char tmp_path_buf2[FILENAME_MAX+3]; /* as above; used in functions which take two path arguments */
bool *o_append; /* O_APPEND is stored here for each max_files entries (because O_APPEND is not compatible with FA_OPEN_APPEND) */
FIL files[0]; /* array with max_files entries; must be the final member of the structure */
} vfs_fat_ctx_t;
typedef struct {
DIR dir;
long offset;
FF_DIR ffdir;
FILINFO filinfo;
struct dirent cur_dirent;
} vfs_fat_dir_t;
/* Date and time storage formats in FAT */
typedef union {
struct {
uint16_t mday : 5; /* Day of month, 1 - 31 */
uint16_t mon : 4; /* Month, 1 - 12 */
uint16_t year : 7; /* Year, counting from 1980. E.g. 37 for 2017 */
};
uint16_t as_int;
} fat_date_t;
typedef union {
struct {
uint16_t sec : 5; /* Seconds divided by 2. E.g. 21 for 42 seconds */
uint16_t min : 6; /* Minutes, 0 - 59 */
uint16_t hour : 5; /* Hour, 0 - 23 */
};
uint16_t as_int;
} fat_time_t;
static const char* TAG = "vfs_fat";
static ssize_t vfs_fat_write(void* p, int fd, const void * data, size_t size);
static off_t vfs_fat_lseek(void* p, int fd, off_t size, int mode);
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size);
static ssize_t vfs_fat_pread(void *ctx, int fd, void *dst, size_t size, off_t offset);
static ssize_t vfs_fat_pwrite(void *ctx, int fd, const void *src, size_t size, off_t offset);
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode);
static int vfs_fat_close(void* ctx, int fd);
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st);
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st);
static int vfs_fat_fsync(void* ctx, int fd);
static int vfs_fat_link(void* ctx, const char* n1, const char* n2);
static int vfs_fat_unlink(void* ctx, const char *path);
static int vfs_fat_rename(void* ctx, const char *src, const char *dst);
static DIR* vfs_fat_opendir(void* ctx, const char* name);
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir);
static int vfs_fat_readdir_r(void* ctx, DIR* pdir, struct dirent* entry, struct dirent** out_dirent);
static long vfs_fat_telldir(void* ctx, DIR* pdir);
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset);
static int vfs_fat_closedir(void* ctx, DIR* pdir);
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode);
static int vfs_fat_rmdir(void* ctx, const char* name);
static int vfs_fat_access(void* ctx, const char *path, int amode);
static int vfs_fat_truncate(void* ctx, const char *path, off_t length);
static int vfs_fat_utime(void* ctx, const char *path, const struct utimbuf *times);
static vfs_fat_ctx_t* s_fat_ctxs[FF_VOLUMES] = { NULL, NULL };
//backwards-compatibility with esp_vfs_fat_unregister()
static vfs_fat_ctx_t* s_fat_ctx = NULL;
static size_t find_context_index_by_path(const char* base_path)
{
for(size_t i=0; i<FF_VOLUMES; i++) {
if (s_fat_ctxs[i] && !strcmp(s_fat_ctxs[i]->base_path, base_path)) {
return i;
}
}
return FF_VOLUMES;
}
static size_t find_unused_context_index()
{
for(size_t i=0; i<FF_VOLUMES; i++) {
if (!s_fat_ctxs[i]) {
return i;
}
}
return FF_VOLUMES;
}
esp_err_t esp_vfs_fat_register(const char* base_path, const char* fat_drive, size_t max_files, FATFS** out_fs)
{
size_t ctx = find_context_index_by_path(base_path);
if (ctx < FF_VOLUMES) {
return ESP_ERR_INVALID_STATE;
}
ctx = find_unused_context_index();
if (ctx == FF_VOLUMES) {
return ESP_ERR_NO_MEM;
}
const esp_vfs_t vfs = {
.flags = ESP_VFS_FLAG_CONTEXT_PTR,
.write_p = &vfs_fat_write,
.lseek_p = &vfs_fat_lseek,
.read_p = &vfs_fat_read,
.pread_p = &vfs_fat_pread,
.pwrite_p = &vfs_fat_pwrite,
.open_p = &vfs_fat_open,
.close_p = &vfs_fat_close,
.fstat_p = &vfs_fat_fstat,
.stat_p = &vfs_fat_stat,
.fsync_p = &vfs_fat_fsync,
.link_p = &vfs_fat_link,
.unlink_p = &vfs_fat_unlink,
.rename_p = &vfs_fat_rename,
.opendir_p = &vfs_fat_opendir,
.closedir_p = &vfs_fat_closedir,
.readdir_p = &vfs_fat_readdir,
.readdir_r_p = &vfs_fat_readdir_r,
.seekdir_p = &vfs_fat_seekdir,
.telldir_p = &vfs_fat_telldir,
.mkdir_p = &vfs_fat_mkdir,
.rmdir_p = &vfs_fat_rmdir,
.access_p = &vfs_fat_access,
.truncate_p = &vfs_fat_truncate,
.utime_p = &vfs_fat_utime,
};
size_t ctx_size = sizeof(vfs_fat_ctx_t) + max_files * sizeof(FIL);
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ff_memalloc(ctx_size);
if (fat_ctx == NULL) {
return ESP_ERR_NO_MEM;
}
memset(fat_ctx, 0, ctx_size);
fat_ctx->o_append = ff_memalloc(max_files * sizeof(bool));
if (fat_ctx->o_append == NULL) {
free(fat_ctx);
return ESP_ERR_NO_MEM;
}
memset(fat_ctx->o_append, 0, max_files * sizeof(bool));
fat_ctx->max_files = max_files;
strlcpy(fat_ctx->fat_drive, fat_drive, sizeof(fat_ctx->fat_drive) - 1);
strlcpy(fat_ctx->base_path, base_path, sizeof(fat_ctx->base_path) - 1);
esp_err_t err = esp_vfs_register(base_path, &vfs, fat_ctx);
if (err != ESP_OK) {
free(fat_ctx->o_append);
free(fat_ctx);
return err;
}
_lock_init(&fat_ctx->lock);
s_fat_ctxs[ctx] = fat_ctx;
//compatibility
s_fat_ctx = fat_ctx;
*out_fs = &fat_ctx->fs;
return ESP_OK;
}
esp_err_t esp_vfs_fat_unregister_path(const char* base_path)
{
size_t ctx = find_context_index_by_path(base_path);
if (ctx == FF_VOLUMES) {
return ESP_ERR_INVALID_STATE;
}
vfs_fat_ctx_t* fat_ctx = s_fat_ctxs[ctx];
esp_err_t err = esp_vfs_unregister(fat_ctx->base_path);
if (err != ESP_OK) {
return err;
}
_lock_close(&fat_ctx->lock);
free(fat_ctx->o_append);
free(fat_ctx);
s_fat_ctxs[ctx] = NULL;
return ESP_OK;
}
static int get_next_fd(vfs_fat_ctx_t* fat_ctx)
{
for (size_t i = 0; i < fat_ctx->max_files; ++i) {
if (fat_ctx->files[i].obj.fs == NULL) {
return (int) i;
}
}
return -1;
}
static int fat_mode_conv(int m)
{
int res = 0;
int acc_mode = m & O_ACCMODE;
if (acc_mode == O_RDONLY) {
res |= FA_READ;
} else if (acc_mode == O_WRONLY) {
res |= FA_WRITE;
} else if (acc_mode == O_RDWR) {
res |= FA_READ | FA_WRITE;
}
if ((m & O_CREAT) && (m & O_EXCL)) {
res |= FA_CREATE_NEW;
} else if ((m & O_CREAT) && (m & O_TRUNC)) {
res |= FA_CREATE_ALWAYS;
} else if (m & O_APPEND) {
res |= FA_OPEN_ALWAYS;
} else {
res |= FA_OPEN_EXISTING;
}
return res;
}
static int fresult_to_errno(FRESULT fr)
{
switch(fr) {
case FR_DISK_ERR: return EIO;
case FR_INT_ERR:
assert(0 && "fatfs internal error");
return EIO;
case FR_NOT_READY: return ENODEV;
case FR_NO_FILE: return ENOENT;
case FR_NO_PATH: return ENOENT;
case FR_INVALID_NAME: return EINVAL;
case FR_DENIED: return EACCES;
case FR_EXIST: return EEXIST;
case FR_INVALID_OBJECT: return EBADF;
case FR_WRITE_PROTECTED: return EACCES;
case FR_INVALID_DRIVE: return ENXIO;
case FR_NOT_ENABLED: return ENODEV;
case FR_NO_FILESYSTEM: return ENODEV;
case FR_MKFS_ABORTED: return EINTR;
case FR_TIMEOUT: return ETIMEDOUT;
case FR_LOCKED: return EACCES;
case FR_NOT_ENOUGH_CORE: return ENOMEM;
case FR_TOO_MANY_OPEN_FILES: return ENFILE;
case FR_INVALID_PARAMETER: return EINVAL;
case FR_OK: return 0;
}
assert(0 && "unhandled FRESULT");
return ENOTSUP;
}
static void file_cleanup(vfs_fat_ctx_t* ctx, int fd)
{
memset(&ctx->files[fd], 0, sizeof(FIL));
}
/**
* @brief Prepend drive letters to path names
* This function returns new path path pointers, pointing to a temporary buffer
* inside ctx.
* @note Call this function with ctx->lock acquired. Paths are valid while the
* lock is held.
* @param ctx vfs_fat_ctx_t context
* @param[inout] path as input, pointer to the path; as output, pointer to the new path
* @param[inout] path2 as input, pointer to the path; as output, pointer to the new path
*/
static void prepend_drive_to_path(vfs_fat_ctx_t * ctx, const char ** path, const char ** path2){
snprintf(ctx->tmp_path_buf, sizeof(ctx->tmp_path_buf), "%s%s", ctx->fat_drive, *path);
*path = ctx->tmp_path_buf;
if(path2){
snprintf(ctx->tmp_path_buf2, sizeof(ctx->tmp_path_buf2), "%s%s", ((vfs_fat_ctx_t*)ctx)->fat_drive, *path2);
*path2 = ctx->tmp_path_buf2;
}
}
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode)
{
ESP_LOGV(TAG, "%s: path=\"%s\", flags=%x, mode=%x", __func__, path, flags, mode);
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
int fd = get_next_fd(fat_ctx);
if (fd < 0) {
_lock_release(&fat_ctx->lock);
ESP_LOGE(TAG, "open: no free file descriptors");
errno = ENFILE;
return -1;
}
FRESULT res = f_open(&fat_ctx->files[fd], path, fat_mode_conv(flags));
if (res != FR_OK) {
file_cleanup(fat_ctx, fd);
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
// O_APPEND need to be stored because it is not compatible with FA_OPEN_APPEND:
// - FA_OPEN_APPEND means to jump to the end of file only after open()
// - O_APPEND means to jump to the end only before each write()
// Other VFS drivers handles O_APPEND well (to the best of my knowledge),
// therefore this flag is stored here (at this VFS level) in order to save
// memory.
fat_ctx->o_append[fd] = (flags & O_APPEND) == O_APPEND;
_lock_release(&fat_ctx->lock);
return fd;
}
static ssize_t vfs_fat_write(void* ctx, int fd, const void * data, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
FRESULT res;
if (fat_ctx->o_append[fd]) {
if ((res = f_lseek(file, f_size(file))) != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
}
unsigned written = 0;
res = f_write(file, data, size, &written);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (written == 0) {
return -1;
}
}
return written;
}
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
unsigned read = 0;
FRESULT res = f_read(file, dst, size, &read);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (read == 0) {
return -1;
}
}
return read;
}
static ssize_t vfs_fat_pread(void *ctx, int fd, void *dst, size_t size, off_t offset)
{
ssize_t ret = -1;
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
FIL *file = &fat_ctx->files[fd];
const off_t prev_pos = f_tell(file);
FRESULT f_res = f_lseek(file, offset);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
goto pread_release;
}
unsigned read = 0;
f_res = f_read(file, dst, size, &read);
if (f_res == FR_OK) {
ret = read;
} else {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
// No return yet - need to restore previous position
}
f_res = f_lseek(file, prev_pos);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
if (ret >= 0) {
errno = fresult_to_errno(f_res);
} // else f_read failed so errno shouldn't be overwritten
ret = -1; // in case the read was successful but the seek wasn't
}
pread_release:
_lock_release(&fat_ctx->lock);
return ret;
}
static ssize_t vfs_fat_pwrite(void *ctx, int fd, const void *src, size_t size, off_t offset)
{
ssize_t ret = -1;
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
FIL *file = &fat_ctx->files[fd];
const off_t prev_pos = f_tell(file);
FRESULT f_res = f_lseek(file, offset);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
goto pwrite_release;
}
unsigned wr = 0;
f_res = f_write(file, src, size, &wr);
if (f_res == FR_OK) {
ret = wr;
} else {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
// No return yet - need to restore previous position
}
f_res = f_lseek(file, prev_pos);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
if (ret >= 0) {
errno = fresult_to_errno(f_res);
} // else f_write failed so errno shouldn't be overwritten
ret = -1; // in case the write was successful but the seek wasn't
}
pwrite_release:
_lock_release(&fat_ctx->lock);
return ret;
}
static int vfs_fat_fsync(void* ctx, int fd)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
FIL* file = &fat_ctx->files[fd];
FRESULT res = f_sync(file);
_lock_release(&fat_ctx->lock);
int rc = 0;
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
rc = -1;
}
return rc;
}
static int vfs_fat_close(void* ctx, int fd)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
FIL* file = &fat_ctx->files[fd];
FRESULT res = f_close(file);
file_cleanup(fat_ctx, fd);
_lock_release(&fat_ctx->lock);
int rc = 0;
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
rc = -1;
}
return rc;
}
static off_t vfs_fat_lseek(void* ctx, int fd, off_t offset, int mode)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
off_t new_pos;
if (mode == SEEK_SET) {
new_pos = offset;
} else if (mode == SEEK_CUR) {
off_t cur_pos = f_tell(file);
new_pos = cur_pos + offset;
} else if (mode == SEEK_END) {
off_t size = f_size(file);
new_pos = size + offset;
} else {
errno = EINVAL;
return -1;
}
FRESULT res = f_lseek(file, new_pos);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return new_pos;
}
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
st->st_size = f_size(file);
st->st_mode = S_IRWXU | S_IRWXG | S_IRWXO | S_IFREG;
st->st_mtime = 0;
st->st_atime = 0;
st->st_ctime = 0;
return 0;
}
static inline mode_t get_stat_mode(bool is_dir)
{
return S_IRWXU | S_IRWXG | S_IRWXO |
((is_dir) ? S_IFDIR : S_IFREG);
}
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st)
{
if (strcmp(path, "/") == 0) {
/* FatFS f_stat function does not work for the drive root.
* Just pretend that this is a directory.
*/
memset(st, 0, sizeof(*st));
st->st_mode = get_stat_mode(true);
return 0;
}
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FILINFO info;
FRESULT res = f_stat(path, &info);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
memset(st, 0, sizeof(*st));
st->st_size = info.fsize;
st->st_mode = get_stat_mode((info.fattrib & AM_DIR) != 0);
fat_date_t fdate = { .as_int = info.fdate };
fat_time_t ftime = { .as_int = info.ftime };
struct tm tm = {
.tm_mday = fdate.mday,
.tm_mon = fdate.mon - 1, /* unlike tm_mday, tm_mon is zero-based */
.tm_year = fdate.year + 80,
.tm_sec = ftime.sec * 2,
.tm_min = ftime.min,
.tm_hour = ftime.hour
};
st->st_mtime = mktime(&tm);
st->st_atime = 0;
st->st_ctime = 0;
return 0;
}
static int vfs_fat_unlink(void* ctx, const char *path)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FRESULT res = f_unlink(path);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_link(void* ctx, const char* n1, const char* n2)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &n1, &n2);
const size_t copy_buf_size = fat_ctx->fs.csize;
FRESULT res;
FIL* pf1 = (FIL*) ff_memalloc(sizeof(FIL));
FIL* pf2 = (FIL*) ff_memalloc(sizeof(FIL));
void* buf = ff_memalloc(copy_buf_size);
if (buf == NULL || pf1 == NULL || pf2 == NULL) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "alloc failed, pf1=%p, pf2=%p, buf=%p", pf1, pf2, buf);
free(pf1);
free(pf2);
free(buf);
errno = ENOMEM;
return -1;
}
memset(pf1, 0, sizeof(*pf1));
memset(pf2, 0, sizeof(*pf2));
res = f_open(pf1, n1, FA_READ | FA_OPEN_EXISTING);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
goto fail1;
}
res = f_open(pf2, n2, FA_WRITE | FA_CREATE_NEW);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
goto fail2;
}
size_t size_left = f_size(pf1);
while (size_left > 0) {
size_t will_copy = (size_left < copy_buf_size) ? size_left : copy_buf_size;
size_t read;
res = f_read(pf1, buf, will_copy, &read);
if (res != FR_OK) {
goto fail3;
} else if (read != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_t written;
res = f_write(pf2, buf, will_copy, &written);
if (res != FR_OK) {
goto fail3;
} else if (written != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_left -= will_copy;
}
fail3:
f_close(pf2);
free(pf2);
fail2:
f_close(pf1);
free(pf1);
fail1:
free(buf);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rename(void* ctx, const char *src, const char *dst)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &src, &dst);
FRESULT res = f_rename(src, dst);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static DIR* vfs_fat_opendir(void* ctx, const char* name)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
vfs_fat_dir_t* fat_dir = ff_memalloc(sizeof(vfs_fat_dir_t));
if (!fat_dir) {
_lock_release(&fat_ctx->lock);
errno = ENOMEM;
return NULL;
}
memset(fat_dir, 0, sizeof(*fat_dir));
FRESULT res = f_opendir(&fat_dir->ffdir, name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
free(fat_dir);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return NULL;
}
return (DIR*) fat_dir;
}
static int vfs_fat_closedir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_closedir(&fat_dir->ffdir);
free(pdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir)
{
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
struct dirent* out_dirent;
int err = vfs_fat_readdir_r(ctx, pdir, &fat_dir->cur_dirent, &out_dirent);
if (err != 0) {
errno = err;
return NULL;
}
return out_dirent;
}
static int vfs_fat_readdir_r(void* ctx, DIR* pdir,
struct dirent* entry, struct dirent** out_dirent)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
*out_dirent = NULL;
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
return fresult_to_errno(res);
}
if (fat_dir->filinfo.fname[0] == 0) {
// end of directory
*out_dirent = NULL;
return 0;
}
entry->d_ino = 0;
if (fat_dir->filinfo.fattrib & AM_DIR) {
entry->d_type = DT_DIR;
} else {
entry->d_type = DT_REG;
}
strlcpy(entry->d_name, fat_dir->filinfo.fname,
sizeof(entry->d_name));
fat_dir->offset++;
*out_dirent = entry;
return 0;
}
static long vfs_fat_telldir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
return fat_dir->offset;
}
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res;
if (offset < fat_dir->offset) {
res = f_rewinddir(&fat_dir->ffdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: rewinddir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset = 0;
}
while (fat_dir->offset < offset) {
res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: f_readdir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset++;
}
}
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode)
{
(void) mode;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
FRESULT res = f_mkdir(name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rmdir(void* ctx, const char* name)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
FRESULT res = f_unlink(name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_access(void* ctx, const char *path, int amode)
{
FILINFO info;
int ret = 0;
FRESULT res;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
res = f_stat(path, &info);
_lock_release(&fat_ctx->lock);
if (res == FR_OK) {
if (((amode & W_OK) == W_OK) && ((info.fattrib & AM_RDO) == AM_RDO)) {
ret = -1;
errno = EACCES;
}
// There is no flag to test readable or executable: we assume that if
// it exists then it is readable and executable
} else {
ret = -1;
errno = ENOENT;
}
return ret;
}
static int vfs_fat_truncate(void* ctx, const char *path, off_t length)
{
FRESULT res;
FIL* file;
int ret = 0;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
file = (FIL*) ff_memalloc(sizeof(FIL));
if (file == NULL) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "truncate alloc failed");
errno = ENOMEM;
ret = -1;
goto out;
}
memset(file, 0, sizeof(*file));
res = f_open(file, path, FA_WRITE);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
goto out;
}
res = f_size(file);
if (res < length) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "truncate does not support extending size");
errno = EPERM;
ret = -1;
goto close;
}
res = f_lseek(file, length);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
goto close;
}
res = f_truncate(file);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
}
close:
res = f_close(file);
if (res != FR_OK) {
ESP_LOGE(TAG, "closing file opened for truncate failed");
// Overwrite previous errors, since not being able to close
// an opened file is a more critical issue.
errno = fresult_to_errno(res);
ret = -1;
}
out:
free(file);
return ret;
}
static int vfs_fat_utime(void *ctx, const char *path, const struct utimbuf *times)
{
FILINFO filinfo_time;
{
struct tm tm_time;
if (times) {
localtime_r(&times->modtime, &tm_time);
} else {
// use current time
struct timeval tv;
gettimeofday(&tv, NULL);
localtime_r(&tv.tv_sec, &tm_time);
}
if (tm_time.tm_year < 80) {
// FATFS cannot handle years before 1980
errno = EINVAL;
return -1;
}
fat_date_t fdate;
fat_time_t ftime;
// this time transformation is esentially the reverse of the one in vfs_fat_stat()
fdate.mday = tm_time.tm_mday;
fdate.mon = tm_time.tm_mon + 1; // January in fdate.mon is 1, and 0 in tm_time.tm_mon
fdate.year = tm_time.tm_year - 80; // tm_time.tm_year=0 is 1900, tm_time.tm_year=0 is 1980
ftime.sec = tm_time.tm_sec / 2, // ftime.sec counts seconds by 2
ftime.min = tm_time.tm_min;
ftime.hour = tm_time.tm_hour;
filinfo_time.fdate = fdate.as_int;
filinfo_time.ftime = ftime.as_int;
}
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FRESULT res = f_utime(path, &filinfo_time);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}