mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
349 lines
13 KiB
C
349 lines
13 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2017-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sys/param.h"
|
|
#include "esp_timer_impl.h"
|
|
#include "esp_timer.h"
|
|
#include "esp_err.h"
|
|
#include "esp_system.h"
|
|
#include "esp_task.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/timer_group_reg.h"
|
|
#include "soc/rtc.h"
|
|
#include "hal/timer_ll.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
|
|
/**
|
|
* @file esp_timer_lac.c
|
|
* @brief Implementation of chip-specific part of esp_timer
|
|
*
|
|
* This implementation uses TG0 LAC timer of the ESP32. This timer is
|
|
* a 64-bit up-counting timer, with a programmable compare value (called 'alarm'
|
|
* hereafter). When the timer reaches compare value, interrupt is raised.
|
|
* The timer can be configured to produce an edge or a level interrupt.
|
|
*/
|
|
|
|
/* Selects which Timer Group peripheral to use */
|
|
#define LACT_MODULE 0
|
|
|
|
#if LACT_MODULE == 0
|
|
#define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
|
|
#define PERIPH_LACT PERIPH_TIMG0_MODULE
|
|
#elif LACT_MODULE == 1
|
|
#define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
|
|
#define PERIPH_LACT PERIPH_TIMG1_MODULE
|
|
#else
|
|
#error "Incorrect the number of LACT module (only 0 or 1)"
|
|
#endif
|
|
|
|
/* Desired number of timer ticks per microsecond.
|
|
* This value should be small enough so that all possible APB frequencies
|
|
* could be divided by it without remainder.
|
|
* On the other hand, the smaller this value is, the longer we need to wait
|
|
* after setting UPDATE_REG before the timer value can be read.
|
|
* If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which
|
|
* makes esp_timer_impl_get_time function take too much time.
|
|
* The value TICKS_PER_US == 2 allows for most of the APB frequencies, and
|
|
* allows reading the counter quickly enough.
|
|
*/
|
|
#define TICKS_PER_US 2
|
|
|
|
/* Shorter register names, used in this file */
|
|
#define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE))
|
|
#define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE))
|
|
#define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE))
|
|
#define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE))
|
|
#define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE))
|
|
#define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE))
|
|
#define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE))
|
|
#define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE))
|
|
#define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE))
|
|
#define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE))
|
|
#define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
|
|
#define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
|
|
#define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))
|
|
|
|
/* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */
|
|
typedef struct {
|
|
union {
|
|
struct {
|
|
uint32_t lo;
|
|
uint32_t hi;
|
|
};
|
|
uint64_t val;
|
|
};
|
|
} timer_64b_reg_t;
|
|
|
|
static const char* TAG = "esp_timer_impl";
|
|
|
|
#define NOT_USED 0xBAD00FAD
|
|
|
|
/* Interrupt handle returned by the interrupt allocator */
|
|
#ifdef CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY
|
|
#define ISR_HANDLERS (portNUM_PROCESSORS)
|
|
#else
|
|
#define ISR_HANDLERS (1)
|
|
#endif
|
|
static intr_handle_t s_timer_interrupt_handle[ISR_HANDLERS] = { NULL };
|
|
|
|
/* Function from the upper layer to be called when the interrupt happens.
|
|
* Registered in esp_timer_impl_init.
|
|
*/
|
|
static intr_handler_t s_alarm_handler = NULL;
|
|
|
|
/* Spinlock used to protect access to the hardware registers. */
|
|
extern portMUX_TYPE s_time_update_lock;
|
|
|
|
/* Alarm values to generate interrupt on match */
|
|
extern uint64_t timestamp_id[2];
|
|
|
|
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
|
|
{
|
|
uint32_t lo, hi;
|
|
uint32_t lo_start = REG_READ(COUNT_LO_REG);
|
|
uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
|
|
/* The peripheral doesn't have a bit to indicate that the update is done, so we poll the
|
|
* lower 32 bit part of the counter until it changes, or a timeout expires.
|
|
*/
|
|
REG_WRITE(UPDATE_REG, 1);
|
|
do {
|
|
lo = REG_READ(COUNT_LO_REG);
|
|
} while (lo == lo_start && div-- > 0);
|
|
|
|
/* Since this function is called without a critical section, verify that LO and HI
|
|
* registers are consistent. That is, if an interrupt happens between reading LO and
|
|
* HI registers, and esp_timer_impl_get_time is called from an ISR, then try to
|
|
* detect this by the change in LO register value, and re-read both registers.
|
|
*/
|
|
do {
|
|
lo_start = lo;
|
|
hi = REG_READ(COUNT_HI_REG);
|
|
lo = REG_READ(COUNT_LO_REG);
|
|
} while (lo != lo_start);
|
|
|
|
timer_64b_reg_t result = {
|
|
.lo = lo,
|
|
.hi = hi
|
|
};
|
|
return result.val;
|
|
}
|
|
|
|
int64_t IRAM_ATTR esp_timer_impl_get_time(void)
|
|
{
|
|
return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
|
|
}
|
|
|
|
int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
|
|
|
|
void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id)
|
|
{
|
|
assert(alarm_id < sizeof(timestamp_id) / sizeof(timestamp_id[0]));
|
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
|
timestamp_id[alarm_id] = timestamp;
|
|
timestamp = MIN(timestamp_id[0], timestamp_id[1]);
|
|
if (timestamp != UINT64_MAX) {
|
|
int64_t offset = TICKS_PER_US * 2;
|
|
uint64_t now_time = esp_timer_impl_get_counter_reg();
|
|
timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
|
|
do {
|
|
REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
|
REG_WRITE(ALARM_LO_REG, alarm.lo);
|
|
REG_WRITE(ALARM_HI_REG, alarm.hi);
|
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
|
now_time = esp_timer_impl_get_counter_reg();
|
|
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
|
|
if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
|
|
// new alarm is less than the counter and the interrupt flag is not set
|
|
offset += llabs(delta) + TICKS_PER_US * 2;
|
|
alarm.val = now_time + offset;
|
|
} else {
|
|
// finish if either (alarm > counter) or the interrupt flag is already set.
|
|
break;
|
|
}
|
|
} while(1);
|
|
}
|
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
|
}
|
|
|
|
static void IRAM_ATTR timer_alarm_isr(void *arg)
|
|
{
|
|
#if ISR_HANDLERS == 1
|
|
/* Clear interrupt status */
|
|
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
|
|
/* Call the upper layer handler */
|
|
(*s_alarm_handler)(arg);
|
|
#else
|
|
static volatile uint32_t processed_by = NOT_USED;
|
|
static volatile bool pending_alarm = false;
|
|
/* CRITICAL section ensures the read/clear is atomic between cores */
|
|
portENTER_CRITICAL_ISR(&s_time_update_lock);
|
|
if (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST)) {
|
|
// Clear interrupt status
|
|
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
// Is the other core already processing a previous alarm?
|
|
if (processed_by == NOT_USED) {
|
|
// Current core is not processing an alarm yet
|
|
processed_by = xPortGetCoreID();
|
|
do {
|
|
pending_alarm = false;
|
|
// Clear interrupt status
|
|
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
portEXIT_CRITICAL_ISR(&s_time_update_lock);
|
|
|
|
(*s_alarm_handler)(arg);
|
|
|
|
portENTER_CRITICAL_ISR(&s_time_update_lock);
|
|
// Another alarm could have occurred while were handling the previous alarm.
|
|
// Check if we need to call the s_alarm_handler again:
|
|
// 1) if the alarm has already been fired, it helps to handle it immediately without an additional ISR call.
|
|
// 2) handle pending alarm that was cleared by the other core in time when this core worked with the current alarm.
|
|
} while (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) || pending_alarm);
|
|
processed_by = NOT_USED;
|
|
} else {
|
|
// Current core arrived at ISR but the other core is still handling a previous alarm.
|
|
// Once we already cleared the ISR status we need to let the other core know that it was.
|
|
// Set the flag to handle the current alarm by the other core later.
|
|
pending_alarm = true;
|
|
}
|
|
}
|
|
portEXIT_CRITICAL_ISR(&s_time_update_lock);
|
|
#endif // ISR_HANDLERS != 1
|
|
}
|
|
|
|
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
|
|
{
|
|
portENTER_CRITICAL(&s_time_update_lock);
|
|
assert(apb_ticks_per_us >= 3 && "divider value too low");
|
|
assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
|
|
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
|
|
portEXIT_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
void esp_timer_impl_set(uint64_t new_us)
|
|
{
|
|
portENTER_CRITICAL(&s_time_update_lock);
|
|
timer_64b_reg_t dst = { .val = new_us * TICKS_PER_US };
|
|
REG_WRITE(LOAD_LO_REG, dst.lo);
|
|
REG_WRITE(LOAD_HI_REG, dst.hi);
|
|
REG_WRITE(LOAD_REG, 1);
|
|
portEXIT_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
void esp_timer_impl_advance(int64_t time_diff_us)
|
|
{
|
|
uint64_t now = esp_timer_impl_get_time();
|
|
esp_timer_impl_set(now + time_diff_us);
|
|
}
|
|
|
|
esp_err_t esp_timer_impl_early_init(void)
|
|
{
|
|
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_LACT, ref_count) {
|
|
if (ref_count == 0) {
|
|
timer_ll_enable_bus_clock(LACT_MODULE, true);
|
|
timer_ll_reset_register(LACT_MODULE);
|
|
}
|
|
}
|
|
|
|
REG_WRITE(CONFIG_REG, 0);
|
|
REG_WRITE(LOAD_LO_REG, 0);
|
|
REG_WRITE(LOAD_HI_REG, 0);
|
|
REG_WRITE(ALARM_LO_REG, UINT32_MAX);
|
|
REG_WRITE(ALARM_HI_REG, UINT32_MAX);
|
|
REG_WRITE(LOAD_REG, 1);
|
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, APB_CLK_FREQ / 1000000 / TICKS_PER_US);
|
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
|
|
TIMG_LACT_LEVEL_INT_EN |
|
|
TIMG_LACT_EN);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
|
|
{
|
|
if (s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()] != NULL) {
|
|
ESP_EARLY_LOGE(TAG, "timer ISR is already initialized");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
int isr_flags = ESP_INTR_FLAG_INTRDISABLED
|
|
| ((1 << CONFIG_ESP_TIMER_INTERRUPT_LEVEL) & ESP_INTR_FLAG_LEVELMASK)
|
|
| ESP_INTR_FLAG_IRAM;
|
|
|
|
esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT, isr_flags,
|
|
&timer_alarm_isr, NULL,
|
|
&s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
|
|
|
|
if (err != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "Can not allocate ISR handler (0x%0x)", err);
|
|
return err;
|
|
}
|
|
|
|
if (s_alarm_handler == NULL) {
|
|
s_alarm_handler = alarm_handler;
|
|
/* In theory, this needs a shared spinlock with the timer group driver.
|
|
* However since esp_timer_impl_init is called early at startup, this
|
|
* will not cause issues in practice.
|
|
*/
|
|
REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
|
|
|
|
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
|
|
|
|
// Set the step for the sleep mode when the timer will work
|
|
// from a slow_clk frequency instead of the APB frequency.
|
|
uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
|
|
REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
|
|
}
|
|
|
|
err = esp_intr_enable(s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
|
|
if (err != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "Can not enable ISR (0x%0x)", err);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void esp_timer_impl_deinit(void)
|
|
{
|
|
REG_WRITE(CONFIG_REG, 0);
|
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
/* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */
|
|
for (unsigned i = 0; i < ISR_HANDLERS; i++) {
|
|
if (s_timer_interrupt_handle[i] != NULL) {
|
|
esp_intr_disable(s_timer_interrupt_handle[i]);
|
|
esp_intr_free(s_timer_interrupt_handle[i]);
|
|
s_timer_interrupt_handle[i] = NULL;
|
|
}
|
|
}
|
|
s_alarm_handler = NULL;
|
|
PERIPH_RCC_RELEASE_ATOMIC(PERIPH_LACT, ref_count) {
|
|
if (ref_count == 0) {
|
|
timer_ll_enable_bus_clock(LACT_MODULE, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t esp_timer_impl_get_alarm_reg(void)
|
|
{
|
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
|
timer_64b_reg_t alarm = {
|
|
.lo = REG_READ(ALARM_LO_REG),
|
|
.hi = REG_READ(ALARM_HI_REG)
|
|
};
|
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
|
return alarm.val;
|
|
}
|
|
|
|
void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
|
|
void esp_timer_private_set(uint64_t new_us) __attribute__((alias("esp_timer_impl_set")));
|
|
void esp_timer_private_advance(int64_t time_diff_us) __attribute__((alias("esp_timer_impl_advance")));
|