mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
324 lines
12 KiB
C
324 lines
12 KiB
C
/*
|
|
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if
|
|
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
|
|
*/
|
|
|
|
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp32s3/spiram.h"
|
|
#include "spiram_psram.h"
|
|
#include "esp_log.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "soc/soc.h"
|
|
#include "esp_heap_caps_init.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "esp32s3/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#include "soc/extmem_reg.h"
|
|
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
|
|
|
#if CONFIG_SPIRAM
|
|
|
|
static const char* TAG = "spiram";
|
|
|
|
#if CONFIG_SPIRAM_SPEED_40M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S40M
|
|
#elif CONFIG_SPIRAM_SPEED_80M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S80M
|
|
#else
|
|
#define PSRAM_SPEED PSRAM_CACHE_S20M
|
|
#endif
|
|
|
|
#define SPIRAM_SIZE esp_spiram_get_size()
|
|
|
|
static bool spiram_inited=false;
|
|
|
|
|
|
/*
|
|
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
|
|
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
|
|
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
|
|
*/
|
|
bool esp_spiram_test(void)
|
|
{
|
|
volatile int *spiram=(volatile int*)(SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE);
|
|
size_t p;
|
|
size_t s=SPIRAM_SIZE;
|
|
int errct=0;
|
|
int initial_err=-1;
|
|
|
|
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) < SPIRAM_SIZE) {
|
|
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
|
|
spiram=(volatile int*)SOC_EXTRAM_DATA_LOW;
|
|
s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
|
|
}
|
|
for (p=0; p<(s/sizeof(int)); p+=8) {
|
|
spiram[p]=p^0xAAAAAAAA;
|
|
}
|
|
for (p=0; p<(s/sizeof(int)); p+=8) {
|
|
if (spiram[p]!=(p^0xAAAAAAAA)) {
|
|
errct++;
|
|
if (errct==1) initial_err=p*4;
|
|
if (errct < 4) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA);
|
|
}
|
|
}
|
|
}
|
|
if (errct) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW);
|
|
return false;
|
|
} else {
|
|
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR esp_spiram_init_cache(void)
|
|
{
|
|
Cache_Suspend_DCache();
|
|
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >= SPIRAM_SIZE) {
|
|
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE, 0, 64, SPIRAM_SIZE >> 16, 0);
|
|
} else {
|
|
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE, 0, 64, (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >> 16, 0);
|
|
}
|
|
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS);
|
|
#endif
|
|
Cache_Resume_DCache(0);
|
|
}
|
|
|
|
static uint32_t pages_for_flash = 0;
|
|
static uint32_t page0_mapped = 0;
|
|
static uint32_t page0_page = INVALID_PHY_PAGE;
|
|
static uint32_t instrcution_in_spiram = 0;
|
|
static uint32_t rodata_in_spiram = 0;
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
static int instr_flash2spiram_offs = 0;
|
|
static uint32_t instr_start_page = 0;
|
|
static uint32_t instr_end_page = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
static int rodata_flash2spiram_offs = 0;
|
|
static uint32_t rodata_start_page = 0;
|
|
static uint32_t rodata_end_page = 0;
|
|
#endif
|
|
|
|
uint32_t esp_spiram_instruction_access_enabled(void)
|
|
{
|
|
return instrcution_in_spiram;
|
|
}
|
|
|
|
uint32_t esp_spiram_rodata_access_enabled(void)
|
|
{
|
|
return rodata_in_spiram;
|
|
}
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
esp_err_t esp_spiram_enable_instruction_access(void)
|
|
{
|
|
uint32_t pages_in_flash = 0;
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
|
|
if ((pages_in_flash + pages_for_flash) > (SPIRAM_SIZE >> 16)) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (SPIRAM_SIZE >> 16), (pages_in_flash + pages_for_flash));
|
|
return ESP_FAIL;
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
|
|
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
|
|
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
|
|
mmu_value &= MMU_ADDRESS_MASK;
|
|
instr_flash2spiram_offs = mmu_value - pages_for_flash;
|
|
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
instrcution_in_spiram = 1;
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
esp_err_t esp_spiram_enable_rodata_access(void)
|
|
{
|
|
uint32_t pages_in_flash = 0;
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
|
|
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
|
|
|
|
if ((pages_in_flash + pages_for_flash) > (SPIRAM_SIZE >> 16)) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
|
|
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
|
|
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
|
|
mmu_value &= MMU_ADDRESS_MASK;
|
|
rodata_flash2spiram_offs = mmu_value - pages_for_flash;
|
|
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
rodata_in_spiram = 1;
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
void instruction_flash_page_info_init(void)
|
|
{
|
|
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
|
|
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
|
|
|
|
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
|
|
instr_start_page &= MMU_ADDRESS_MASK;
|
|
instr_end_page = instr_start_page + instr_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
|
|
{
|
|
return instr_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
|
|
{
|
|
return instr_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR instruction_flash2spiram_offset(void)
|
|
{
|
|
return instr_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
void rodata_flash_page_info_init(void)
|
|
{
|
|
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - SOC_DROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
|
|
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
|
|
|
|
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
|
|
rodata_start_page &= MMU_ADDRESS_MASK;
|
|
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
|
|
{
|
|
return rodata_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
|
|
{
|
|
return rodata_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR rodata_flash2spiram_offset(void)
|
|
{
|
|
return rodata_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
esp_err_t esp_spiram_init(void)
|
|
{
|
|
esp_err_t r;
|
|
r = psram_enable(PSRAM_SPEED, PSRAM_MODE);
|
|
if (r != ESP_OK) {
|
|
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
spiram_inited=true;
|
|
#if (CONFIG_SPIRAM_SIZE != -1)
|
|
if (esp_spiram_get_size()!=CONFIG_SPIRAM_SIZE) {
|
|
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, esp_spiram_get_size()/1024);
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
#endif
|
|
|
|
ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device",
|
|
(esp_spiram_get_size()*8)/(1024*1024));
|
|
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \
|
|
PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m");
|
|
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t esp_spiram_add_to_heapalloc(void)
|
|
{
|
|
uint32_t size_for_flash = (pages_for_flash << 16);
|
|
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (SPIRAM_SIZE - (pages_for_flash << 16))/1024);
|
|
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
|
|
//no need to explicitly specify them.
|
|
|
|
return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH -1);
|
|
}
|
|
|
|
|
|
static uint8_t *dma_heap;
|
|
|
|
esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
|
|
if (size==0) return ESP_OK; //no-op
|
|
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
|
|
dma_heap=heap_caps_malloc(size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
|
if (!dma_heap) return ESP_ERR_NO_MEM;
|
|
uint32_t caps[]={MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT};
|
|
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1);
|
|
}
|
|
|
|
size_t esp_spiram_get_size(void)
|
|
{
|
|
if (!spiram_inited) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM not initialized");
|
|
abort();
|
|
}
|
|
|
|
psram_size_t size=psram_get_size();
|
|
if (size==PSRAM_SIZE_16MBITS) return 2*1024*1024;
|
|
if (size==PSRAM_SIZE_32MBITS) return 4*1024*1024;
|
|
if (size==PSRAM_SIZE_64MBITS) return 8*1024*1024;
|
|
return SPIRAM_SIZE;
|
|
}
|
|
|
|
/*
|
|
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
|
|
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
|
|
*/
|
|
void IRAM_ATTR esp_spiram_writeback_cache(void)
|
|
{
|
|
extern void Cache_WriteBack_All(void);
|
|
Cache_WriteBack_All();
|
|
}
|
|
|
|
#endif
|