Taavi Hein 8b6060e24e gpio: Bitmask overflow fix in gpio_reset_pin
For pins 32 and up the BIT(nr) macro used here overflowed,
causing undetermined GPIO pins to be reset.
Example: freeing SPI device/bus where CS is on pin 33
caused debug UART to cease communication, TXD0 was
disabled.

Fixed as BIT64(nr) macro, to be used elsewhere as needed.
For example in definitions like GPIO_SEL_32..GPIO_SEL_39.
2018-08-14 04:23:56 +03:00

551 lines
17 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include "esp_err.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "driver/gpio.h"
#include "driver/rtc_io.h"
#include "soc/soc.h"
#include "esp_log.h"
#include "soc/gpio_periph.h"
static const char* GPIO_TAG = "gpio";
#define GPIO_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(GPIO_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
typedef struct {
gpio_isr_t fn; /*!< isr function */
void* args; /*!< isr function args */
} gpio_isr_func_t;
static gpio_isr_func_t* gpio_isr_func = NULL;
static gpio_isr_handle_t gpio_isr_handle;
static portMUX_TYPE gpio_spinlock = portMUX_INITIALIZER_UNLOCKED;
esp_err_t gpio_pullup_en(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
rtc_gpio_pullup_en(gpio_num);
} else {
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
return ESP_OK;
}
esp_err_t gpio_pullup_dis(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
rtc_gpio_pullup_dis(gpio_num);
} else {
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
return ESP_OK;
}
esp_err_t gpio_pulldown_en(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
rtc_gpio_pulldown_en(gpio_num);
} else {
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
return ESP_OK;
}
esp_err_t gpio_pulldown_dis(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
rtc_gpio_pulldown_dis(gpio_num);
} else {
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
return ESP_OK;
}
esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(intr_type < GPIO_INTR_MAX, "GPIO interrupt type error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].int_type = intr_type;
return ESP_OK;
}
static void gpio_intr_status_clr(gpio_num_t gpio_num)
{
if (gpio_num < 32) {
GPIO.status_w1tc = BIT(gpio_num);
} else {
GPIO.status1_w1tc.intr_st = BIT(gpio_num - 32);
}
}
static esp_err_t gpio_intr_enable_on_core (gpio_num_t gpio_num, uint32_t core_id)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
gpio_intr_status_clr(gpio_num);
if (core_id == 0) {
GPIO.pin[gpio_num].int_ena = GPIO_PRO_CPU_INTR_ENA; //enable pro cpu intr
} else {
GPIO.pin[gpio_num].int_ena = GPIO_APP_CPU_INTR_ENA; //enable pro cpu intr
}
return ESP_OK;
}
esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
{
return gpio_intr_enable_on_core (gpio_num, xPortGetCoreID());
}
esp_err_t gpio_intr_disable(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].int_ena = 0; //disable GPIO intr
gpio_intr_status_clr(gpio_num);
return ESP_OK;
}
static esp_err_t gpio_output_disable(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (gpio_num < 32) {
GPIO.enable_w1tc = (0x1 << gpio_num);
} else {
GPIO.enable1_w1tc.data = (0x1 << (gpio_num - 32));
}
// Ensure no other output signal is routed via GPIO matrix to this pin
REG_WRITE(GPIO_FUNC0_OUT_SEL_CFG_REG + (gpio_num * 4),
SIG_GPIO_OUT_IDX);
return ESP_OK;
}
static esp_err_t gpio_output_enable(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO output gpio_num error", ESP_ERR_INVALID_ARG);
if (gpio_num < 32) {
GPIO.enable_w1ts = (0x1 << gpio_num);
} else {
GPIO.enable1_w1ts.data = (0x1 << (gpio_num - 32));
}
gpio_matrix_out(gpio_num, SIG_GPIO_OUT_IDX, false, false);
return ESP_OK;
}
esp_err_t gpio_set_level(gpio_num_t gpio_num, uint32_t level)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO output gpio_num error", ESP_ERR_INVALID_ARG);
if (level) {
if (gpio_num < 32) {
GPIO.out_w1ts = (1 << gpio_num);
} else {
GPIO.out1_w1ts.data = (1 << (gpio_num - 32));
}
} else {
if (gpio_num < 32) {
GPIO.out_w1tc = (1 << gpio_num);
} else {
GPIO.out1_w1tc.data = (1 << (gpio_num - 32));
}
}
return ESP_OK;
}
int gpio_get_level(gpio_num_t gpio_num)
{
if (gpio_num < 32) {
return (GPIO.in >> gpio_num) & 0x1;
} else {
return (GPIO.in1.data >> (gpio_num - 32)) & 0x1;
}
}
esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(pull <= GPIO_FLOATING, "GPIO pull mode error", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
switch (pull) {
case GPIO_PULLUP_ONLY:
gpio_pulldown_dis(gpio_num);
gpio_pullup_en(gpio_num);
break;
case GPIO_PULLDOWN_ONLY:
gpio_pulldown_en(gpio_num);
gpio_pullup_dis(gpio_num);
break;
case GPIO_PULLUP_PULLDOWN:
gpio_pulldown_en(gpio_num);
gpio_pullup_en(gpio_num);
break;
case GPIO_FLOATING:
gpio_pulldown_dis(gpio_num);
gpio_pullup_dis(gpio_num);
break;
default:
ESP_LOGE(GPIO_TAG, "Unknown pull up/down mode,gpio_num=%u,pull=%u", gpio_num, pull);
ret = ESP_ERR_INVALID_ARG;
break;
}
return ret;
}
esp_err_t gpio_set_direction(gpio_num_t gpio_num, gpio_mode_t mode)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if (gpio_num >= 34 && (mode & GPIO_MODE_DEF_OUTPUT)) {
ESP_LOGE(GPIO_TAG, "io_num=%d can only be input", gpio_num);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
if (mode & GPIO_MODE_DEF_INPUT) {
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
} else {
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
if (mode & GPIO_MODE_DEF_OUTPUT) {
gpio_output_enable(gpio_num);
} else {
gpio_output_disable(gpio_num);
}
if (mode & GPIO_MODE_DEF_OD) {
GPIO.pin[gpio_num].pad_driver = 1;
} else {
GPIO.pin[gpio_num].pad_driver = 0;
}
return ret;
}
esp_err_t gpio_config(const gpio_config_t *pGPIOConfig)
{
uint64_t gpio_pin_mask = (pGPIOConfig->pin_bit_mask);
uint32_t io_reg = 0;
uint32_t io_num = 0;
uint8_t input_en = 0;
uint8_t output_en = 0;
uint8_t od_en = 0;
uint8_t pu_en = 0;
uint8_t pd_en = 0;
if (pGPIOConfig->pin_bit_mask == 0 || pGPIOConfig->pin_bit_mask >= (((uint64_t) 1) << GPIO_PIN_COUNT)) {
ESP_LOGE(GPIO_TAG, "GPIO_PIN mask error ");
return ESP_ERR_INVALID_ARG;
}
if ((pGPIOConfig->mode) & (GPIO_MODE_DEF_OUTPUT)) {
//GPIO 34/35/36/37/38/39 can only be used as input mode;
if ((gpio_pin_mask & ( GPIO_SEL_34 | GPIO_SEL_35 | GPIO_SEL_36 | GPIO_SEL_37 | GPIO_SEL_38 | GPIO_SEL_39))) {
ESP_LOGE(GPIO_TAG, "GPIO34-39 can only be used as input mode");
return ESP_ERR_INVALID_ARG;
}
}
do {
io_reg = GPIO_PIN_MUX_REG[io_num];
if (((gpio_pin_mask >> io_num) & BIT(0))) {
if (!io_reg) {
ESP_LOGE(GPIO_TAG, "IO%d is not a valid GPIO",io_num);
return ESP_ERR_INVALID_ARG;
}
if(RTC_GPIO_IS_VALID_GPIO(io_num)){
rtc_gpio_deinit(io_num);
}
if ((pGPIOConfig->mode) & GPIO_MODE_DEF_INPUT) {
input_en = 1;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[io_num]);
} else {
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[io_num]);
}
if ((pGPIOConfig->mode) & GPIO_MODE_DEF_OD) {
od_en = 1;
GPIO.pin[io_num].pad_driver = 1; /*0x01 Open-drain */
} else {
GPIO.pin[io_num].pad_driver = 0; /*0x00 Normal gpio output */
}
if ((pGPIOConfig->mode) & GPIO_MODE_DEF_OUTPUT) {
output_en = 1;
gpio_output_enable(io_num);
} else {
gpio_output_disable(io_num);
}
if (pGPIOConfig->pull_up_en) {
pu_en = 1;
gpio_pullup_en(io_num);
} else {
gpio_pullup_dis(io_num);
}
if (pGPIOConfig->pull_down_en) {
pd_en = 1;
gpio_pulldown_en(io_num);
} else {
gpio_pulldown_dis(io_num);
}
ESP_LOGI(GPIO_TAG, "GPIO[%d]| InputEn: %d| OutputEn: %d| OpenDrain: %d| Pullup: %d| Pulldown: %d| Intr:%d ", io_num, input_en, output_en, od_en, pu_en, pd_en, pGPIOConfig->intr_type);
gpio_set_intr_type(io_num, pGPIOConfig->intr_type);
if (pGPIOConfig->intr_type) {
gpio_intr_enable(io_num);
} else {
gpio_intr_disable(io_num);
}
PIN_FUNC_SELECT(io_reg, PIN_FUNC_GPIO); /*function number 2 is GPIO_FUNC for each pin */
}
io_num++;
} while (io_num < GPIO_PIN_COUNT);
return ESP_OK;
}
esp_err_t gpio_reset_pin(gpio_num_t gpio_num)
{
assert(gpio_num >= 0 && GPIO_IS_VALID_GPIO(gpio_num));
gpio_config_t cfg = {
.pin_bit_mask = BIT64(gpio_num),
.mode = GPIO_MODE_DISABLE,
//for powersave reasons, the GPIO should not be floating, select pullup
.pull_up_en = true,
.pull_down_en = false,
.intr_type = GPIO_INTR_DISABLE,
};
gpio_config(&cfg);
return ESP_OK;
}
void IRAM_ATTR gpio_intr_service(void* arg)
{
//GPIO intr process
uint32_t gpio_num = 0;
//read status to get interrupt status for GPIO0-31
uint32_t gpio_intr_status;
gpio_intr_status = GPIO.status;
//read status1 to get interrupt status for GPIO32-39
uint32_t gpio_intr_status_h;
gpio_intr_status_h = GPIO.status1.intr_st;
if (gpio_isr_func == NULL) {
return;
}
do {
if (gpio_num < 32) {
if (gpio_intr_status & BIT(gpio_num)) { //gpio0-gpio31
if (gpio_isr_func[gpio_num].fn != NULL) {
gpio_isr_func[gpio_num].fn(gpio_isr_func[gpio_num].args);
}
GPIO.status_w1tc = BIT(gpio_num);
}
} else {
if (gpio_intr_status_h & BIT(gpio_num - 32)) {
if (gpio_isr_func[gpio_num].fn != NULL) {
gpio_isr_func[gpio_num].fn(gpio_isr_func[gpio_num].args);
}
GPIO.status1_w1tc.intr_st = BIT(gpio_num - 32);
}
}
} while (++gpio_num < GPIO_PIN_COUNT);
}
esp_err_t gpio_isr_handler_add(gpio_num_t gpio_num, gpio_isr_t isr_handler, void* args)
{
GPIO_CHECK(gpio_isr_func != NULL, "GPIO isr service is not installed, call gpio_install_isr_service() first", ESP_ERR_INVALID_STATE);
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&gpio_spinlock);
gpio_intr_disable(gpio_num);
if (gpio_isr_func) {
gpio_isr_func[gpio_num].fn = isr_handler;
gpio_isr_func[gpio_num].args = args;
}
gpio_intr_enable_on_core (gpio_num, esp_intr_get_cpu(gpio_isr_handle));
portEXIT_CRITICAL(&gpio_spinlock);
return ESP_OK;
}
esp_err_t gpio_isr_handler_remove(gpio_num_t gpio_num)
{
GPIO_CHECK(gpio_isr_func != NULL, "GPIO isr service is not installed, call gpio_install_isr_service() first", ESP_ERR_INVALID_STATE);
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&gpio_spinlock);
gpio_intr_disable(gpio_num);
if (gpio_isr_func) {
gpio_isr_func[gpio_num].fn = NULL;
gpio_isr_func[gpio_num].args = NULL;
}
portEXIT_CRITICAL(&gpio_spinlock);
return ESP_OK;
}
esp_err_t gpio_install_isr_service(int intr_alloc_flags)
{
GPIO_CHECK(gpio_isr_func == NULL, "GPIO isr service already installed", ESP_ERR_INVALID_STATE);
esp_err_t ret;
portENTER_CRITICAL(&gpio_spinlock);
gpio_isr_func = (gpio_isr_func_t*) calloc(GPIO_NUM_MAX, sizeof(gpio_isr_func_t));
if (gpio_isr_func == NULL) {
ret = ESP_ERR_NO_MEM;
} else {
ret = gpio_isr_register(gpio_intr_service, NULL, intr_alloc_flags, &gpio_isr_handle);
}
portEXIT_CRITICAL(&gpio_spinlock);
return ret;
}
void gpio_uninstall_isr_service()
{
if (gpio_isr_func == NULL) {
return;
}
portENTER_CRITICAL(&gpio_spinlock);
esp_intr_free(gpio_isr_handle);
free(gpio_isr_func);
gpio_isr_func = NULL;
portEXIT_CRITICAL(&gpio_spinlock);
return;
}
esp_err_t gpio_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, gpio_isr_handle_t *handle)
{
GPIO_CHECK(fn, "GPIO ISR null", ESP_ERR_INVALID_ARG);
return esp_intr_alloc(ETS_GPIO_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
}
/*only level interrupt can be used for wake-up function*/
esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
if (( intr_type == GPIO_INTR_LOW_LEVEL ) || ( intr_type == GPIO_INTR_HIGH_LEVEL )) {
GPIO.pin[gpio_num].int_type = intr_type;
GPIO.pin[gpio_num].wakeup_enable = 0x1;
} else {
ESP_LOGE(GPIO_TAG, "GPIO wakeup only support Level mode,but edge mode set. gpio_num:%u", gpio_num);
ret = ESP_ERR_INVALID_ARG;
}
return ret;
}
esp_err_t gpio_wakeup_disable(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].wakeup_enable = 0;
return ESP_OK;
}
esp_err_t gpio_set_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t strength)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(strength < GPIO_DRIVE_CAP_MAX, "GPIO drive capability error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
rtc_gpio_set_drive_capability(gpio_num, strength);
} else {
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, strength, FUN_DRV_S);
}
return ESP_OK;
}
esp_err_t gpio_get_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t* strength)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(strength != NULL, "GPIO drive capability pointer error", ESP_ERR_INVALID_ARG);
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return rtc_gpio_get_drive_capability(gpio_num, strength);
} else {
*strength = GET_PERI_REG_BITS2(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, FUN_DRV_S);
}
return ESP_OK;
}
static const uint32_t GPIO_HOLD_MASK[34] = {
0,
GPIO_SEL_1,
0,
GPIO_SEL_0,
0,
GPIO_SEL_8,
GPIO_SEL_2,
GPIO_SEL_3,
GPIO_SEL_4,
GPIO_SEL_5,
GPIO_SEL_6,
GPIO_SEL_7,
0,
0,
0,
0,
GPIO_SEL_9,
GPIO_SEL_10,
GPIO_SEL_11,
GPIO_SEL_12,
0,
GPIO_SEL_14,
GPIO_SEL_15,
GPIO_SEL_16,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
};
esp_err_t gpio_hold_en(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Only output-capable GPIO support this function", ESP_ERR_NOT_SUPPORTED);
esp_err_t r = ESP_OK;
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
r = rtc_gpio_hold_en(gpio_num);
} else if (GPIO_HOLD_MASK[gpio_num]) {
SET_PERI_REG_MASK(RTC_IO_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
} else {
r = ESP_ERR_NOT_SUPPORTED;
}
return r == ESP_OK ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
}
esp_err_t gpio_hold_dis(gpio_num_t gpio_num)
{
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Only output-capable GPIO support this function", ESP_ERR_NOT_SUPPORTED);
esp_err_t r = ESP_OK;
if (RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
r = rtc_gpio_hold_dis(gpio_num);
} else if (GPIO_HOLD_MASK[gpio_num]) {
CLEAR_PERI_REG_MASK(RTC_IO_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
} else {
r = ESP_ERR_NOT_SUPPORTED;
}
return r == ESP_OK ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
}
void gpio_iomux_in(uint32_t gpio, uint32_t signal_idx)
{
GPIO.func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
}
void gpio_iomux_out(uint8_t gpio_num, int func, bool oen_inv)
{
GPIO.func_out_sel_cfg[gpio_num].oen_sel = 0;
GPIO.func_out_sel_cfg[gpio_num].oen_inv_sel = oen_inv;
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func);
}