esp-idf/components/soc/esp32s2/include/soc/ledc_struct.h

215 lines
8.5 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef volatile struct ledc_dev_s {
struct {
struct {
union {
struct {
uint32_t timer_sel: 2; /*There are four high speed timers the two bits are used to select one of them for high speed channel. 2'b00: seletc hstimer0. 2'b01: select hstimer1. 2'b10: select hstimer2. 2'b11: select hstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for high speed channel*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when high speed channel is off.*/
uint32_t low_speed_update: 1; /*This bit is only useful for low speed timer channels, reserved for high speed timers*/
uint32_t ovf_num: 10;
uint32_t ovf_cnt_en: 1;
uint32_t ovf_cnt_rst: 1;
uint32_t ovf_cnt_rst_st: 1;
uint32_t reserved18: 14;
};
uint32_t val;
} conf0;
union {
struct {
uint32_t hpoint: 14;
uint32_t reserved14: 18;
};
uint32_t val;
} hpoint;
union {
struct {
uint32_t duty: 19;
uint32_t reserved19:13;
};
uint32_t val;
} duty;
union {
struct {
uint32_t duty_scale: 10;
uint32_t duty_cycle: 10;
uint32_t duty_num: 10;
uint32_t duty_inc: 1;
uint32_t duty_start: 1;
};
uint32_t val;
} conf1;
union {
struct {
uint32_t duty_read: 19;
uint32_t reserved19:13;
};
uint32_t val;
} duty_rd;
} channel[8];
} channel_group[1]; /* single channel group, low speed mode only */
struct {
struct {
union {
struct {
uint32_t duty_resolution: 4;
uint32_t clock_divider: 18;
uint32_t pause: 1;
uint32_t rst: 1;
uint32_t tick_sel: 1;
uint32_t low_speed_update: 1;
uint32_t reserved26: 6;
};
uint32_t val;
} conf;
union {
struct {
uint32_t timer_cnt: 14;
uint32_t reserved14: 18;
};
uint32_t val;
} value;
} timer[4];
} timer_group[1]; /* single channel group, low speed mode only */
union {
struct {
uint32_t lstimer0_ovf: 1;
uint32_t lstimer1_ovf: 1;
uint32_t lstimer2_ovf: 1;
uint32_t lstimer3_ovf: 1;
uint32_t duty_chng_end_lsch0: 1;
uint32_t duty_chng_end_lsch1: 1;
uint32_t duty_chng_end_lsch2: 1;
uint32_t duty_chng_end_lsch3: 1;
uint32_t duty_chng_end_lsch4: 1;
uint32_t duty_chng_end_lsch5: 1;
uint32_t duty_chng_end_lsch6: 1;
uint32_t duty_chng_end_lsch7: 1;
uint32_t ovf_cnt_lsch0: 1;
uint32_t ovf_cnt_lsch1: 1;
uint32_t ovf_cnt_lsch2: 1;
uint32_t ovf_cnt_lsch3: 1;
uint32_t ovf_cnt_lsch4: 1;
uint32_t ovf_cnt_lsch5: 1;
uint32_t ovf_cnt_lsch6: 1;
uint32_t ovf_cnt_lsch7: 1;
uint32_t reserved20: 12;
};
uint32_t val;
} int_raw;
union {
struct {
uint32_t lstimer0_ovf: 1;
uint32_t lstimer1_ovf: 1;
uint32_t lstimer2_ovf: 1;
uint32_t lstimer3_ovf: 1;
uint32_t duty_chng_end_lsch0: 1;
uint32_t duty_chng_end_lsch1: 1;
uint32_t duty_chng_end_lsch2: 1;
uint32_t duty_chng_end_lsch3: 1;
uint32_t duty_chng_end_lsch4: 1;
uint32_t duty_chng_end_lsch5: 1;
uint32_t duty_chng_end_lsch6: 1;
uint32_t duty_chng_end_lsch7: 1;
uint32_t ovf_cnt_lsch0: 1;
uint32_t ovf_cnt_lsch1: 1;
uint32_t ovf_cnt_lsch2: 1;
uint32_t ovf_cnt_lsch3: 1;
uint32_t ovf_cnt_lsch4: 1;
uint32_t ovf_cnt_lsch5: 1;
uint32_t ovf_cnt_lsch6: 1;
uint32_t ovf_cnt_lsch7: 1;
uint32_t reserved20: 12;
};
uint32_t val;
} int_st;
union {
struct {
uint32_t lstimer0_ovf: 1;
uint32_t lstimer1_ovf: 1;
uint32_t lstimer2_ovf: 1;
uint32_t lstimer3_ovf: 1;
uint32_t duty_chng_end_lsch0: 1;
uint32_t duty_chng_end_lsch1: 1;
uint32_t duty_chng_end_lsch2: 1;
uint32_t duty_chng_end_lsch3: 1;
uint32_t duty_chng_end_lsch4: 1;
uint32_t duty_chng_end_lsch5: 1;
uint32_t duty_chng_end_lsch6: 1;
uint32_t duty_chng_end_lsch7: 1;
uint32_t ovf_cnt_lsch0: 1;
uint32_t ovf_cnt_lsch1: 1;
uint32_t ovf_cnt_lsch2: 1;
uint32_t ovf_cnt_lsch3: 1;
uint32_t ovf_cnt_lsch4: 1;
uint32_t ovf_cnt_lsch5: 1;
uint32_t ovf_cnt_lsch6: 1;
uint32_t ovf_cnt_lsch7: 1;
uint32_t reserved20: 12;
};
uint32_t val;
} int_ena;
union {
struct {
uint32_t lstimer0_ovf: 1;
uint32_t lstimer1_ovf: 1;
uint32_t lstimer2_ovf: 1;
uint32_t lstimer3_ovf: 1;
uint32_t duty_chng_end_lsch0: 1;
uint32_t duty_chng_end_lsch1: 1;
uint32_t duty_chng_end_lsch2: 1;
uint32_t duty_chng_end_lsch3: 1;
uint32_t duty_chng_end_lsch4: 1;
uint32_t duty_chng_end_lsch5: 1;
uint32_t duty_chng_end_lsch6: 1;
uint32_t duty_chng_end_lsch7: 1;
uint32_t ovf_cnt_lsch0: 1;
uint32_t ovf_cnt_lsch1: 1;
uint32_t ovf_cnt_lsch2: 1;
uint32_t ovf_cnt_lsch3: 1;
uint32_t ovf_cnt_lsch4: 1;
uint32_t ovf_cnt_lsch5: 1;
uint32_t ovf_cnt_lsch6: 1;
uint32_t ovf_cnt_lsch7: 1;
uint32_t reserved20: 12;
};
uint32_t val;
} int_clr;
union {
struct {
uint32_t apb_clk_sel: 2; // 0:invalid; 1:80MHz APB clock; 2:8MHz RTC clock; 3:XTAL clock
uint32_t reserved2: 29;
uint32_t clk_en: 1; /*This bit is clock gating control signal. when software configure LED_PWM internal registers it controls the register clock.*/
};
uint32_t val;
} conf;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t reserved_f8;
uint32_t date; /**/
} ledc_dev_t;
extern ledc_dev_t LEDC;
#ifdef __cplusplus
}
#endif