esp-idf/components/driver/spi_slave.c
2017-04-27 11:49:04 +08:00

392 lines
15 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "driver/spi_common.h"
#include "driver/spi_slave.h"
#include "soc/gpio_sig_map.h"
#include "soc/spi_reg.h"
#include "soc/dport_reg.h"
#include "soc/spi_struct.h"
#include "rom/ets_sys.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/ringbuf.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "rom/lldesc.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_heap_alloc_caps.h"
static const char *SPI_TAG = "spi_slave";
#define SPI_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define VALID_HOST(x) (x>SPI_HOST && x<=VSPI_HOST)
typedef struct {
spi_slave_interface_config_t cfg;
intr_handle_t intr;
spi_dev_t *hw;
spi_slave_transaction_t *cur_trans;
lldesc_t *dmadesc_tx;
lldesc_t *dmadesc_rx;
bool no_gpio_matrix;
int max_transfer_sz;
QueueHandle_t trans_queue;
QueueHandle_t ret_queue;
int dma_chan;
} spi_slave_t;
static spi_slave_t *spihost[3];
static void IRAM_ATTR spi_intr(void *arg);
esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const spi_slave_interface_config_t *slave_config, int dma_chan)
{
bool native, claimed;
//We only support HSPI/VSPI, period.
SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG);
claimed=spicommon_periph_claim(host);
SPI_CHECK(claimed, "host already in use", ESP_ERR_INVALID_STATE);
spihost[host]=malloc(sizeof(spi_slave_t));
if (spihost[host]==NULL) goto nomem;
memset(spihost[host], 0, sizeof(spi_slave_t));
memcpy(&spihost[host]->cfg, slave_config, sizeof(spi_slave_interface_config_t));
spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_SLAVE, &native);
gpio_set_direction(slave_config->spics_io_num, GPIO_MODE_INPUT);
spicommon_cs_initialize(host, slave_config->spics_io_num, 0, native == false);
spihost[host]->no_gpio_matrix=native;
spihost[host]->dma_chan=dma_chan;
if (dma_chan!=0) {
//See how many dma descriptors we need and allocate them
int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given
spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
spihost[host]->dmadesc_tx=pvPortMallocCaps(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
spihost[host]->dmadesc_rx=pvPortMallocCaps(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) goto nomem;
} else {
//We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most.
spihost[host]->max_transfer_sz=16*4;
}
//Create queues
spihost[host]->trans_queue=xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *));
spihost[host]->ret_queue=xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *));
if (!spihost[host]->trans_queue || !spihost[host]->ret_queue) goto nomem;
esp_intr_alloc(spicommon_irqsource_for_host(host), ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void*)spihost[host], &spihost[host]->intr);
spihost[host]->hw=spicommon_hw_for_host(host);
//Configure slave
spihost[host]->hw->clock.val=0;
spihost[host]->hw->user.val=0;
spihost[host]->hw->ctrl.val=0;
spihost[host]->hw->slave.wr_rd_buf_en=1; //no sure if needed
spihost[host]->hw->user.doutdin=1; //we only support full duplex
spihost[host]->hw->user.sio=0;
spihost[host]->hw->slave.slave_mode=1;
spihost[host]->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
spihost[host]->hw->dma_out_link.start=0;
spihost[host]->hw->dma_in_link.start=0;
spihost[host]->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
spihost[host]->hw->dma_conf.out_data_burst_en=1;
spihost[host]->hw->slave.sync_reset=1;
spihost[host]->hw->slave.sync_reset=0;
bool nodelay=true;
spihost[host]->hw->ctrl.rd_bit_order=(slave_config->flags & SPI_SLAVE_RXBIT_LSBFIRST)?1:0;
spihost[host]->hw->ctrl.wr_bit_order=(slave_config->flags & SPI_SLAVE_TXBIT_LSBFIRST)?1:0;
if (slave_config->mode==0) {
spihost[host]->hw->pin.ck_idle_edge=0;
spihost[host]->hw->user.ck_i_edge=1;
spihost[host]->hw->ctrl2.miso_delay_mode=nodelay?0:2;
} else if (slave_config->mode==1) {
spihost[host]->hw->pin.ck_idle_edge=0;
spihost[host]->hw->user.ck_i_edge=0;
spihost[host]->hw->ctrl2.miso_delay_mode=nodelay?0:1;
} else if (slave_config->mode==2) {
spihost[host]->hw->pin.ck_idle_edge=1;
spihost[host]->hw->user.ck_i_edge=0;
spihost[host]->hw->ctrl2.miso_delay_mode=nodelay?0:1;
} else if (slave_config->mode==3) {
spihost[host]->hw->pin.ck_idle_edge=1;
spihost[host]->hw->user.ck_i_edge=1;
spihost[host]->hw->ctrl2.miso_delay_mode=nodelay?0:2;
}
//Reset DMA
spihost[host]->hw->dma_conf.val|=SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
spihost[host]->hw->dma_out_link.start=0;
spihost[host]->hw->dma_in_link.start=0;
spihost[host]->hw->dma_conf.val&=~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
//Disable unneeded ints
spihost[host]->hw->slave.rd_buf_done=0;
spihost[host]->hw->slave.wr_buf_done=0;
spihost[host]->hw->slave.rd_sta_done=0;
spihost[host]->hw->slave.wr_sta_done=0;
spihost[host]->hw->slave.rd_buf_inten=0;
spihost[host]->hw->slave.wr_buf_inten=0;
spihost[host]->hw->slave.rd_sta_inten=0;
spihost[host]->hw->slave.wr_sta_inten=0;
//Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
//disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
//any transactions that are queued.
spihost[host]->hw->slave.trans_inten=1;
spihost[host]->hw->slave.trans_done=1;
return ESP_OK;
nomem:
if (spihost[host]) {
if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue);
if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue);
free(spihost[host]->dmadesc_tx);
free(spihost[host]->dmadesc_rx);
}
free(spihost[host]);
spihost[host]=NULL;
spicommon_periph_free(host);
return ESP_ERR_NO_MEM;
}
esp_err_t spi_slave_free(spi_host_device_t host)
{
SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG);
if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue);
if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue);
free(spihost[host]->dmadesc_tx);
free(spihost[host]->dmadesc_rx);
free(spihost[host]);
spihost[host]=NULL;
spicommon_periph_free(host);
spihost[host]=NULL;
return ESP_OK;
}
esp_err_t spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait)
{
BaseType_t r;
SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans_desc->length <= spihost[host]->max_transfer_sz*8, "data transfer > host maximum", ESP_ERR_INVALID_ARG);
r=xQueueSend(spihost[host]->trans_queue, (void*)&trans_desc, ticks_to_wait);
if (!r) return ESP_ERR_TIMEOUT;
esp_intr_enable(spihost[host]->intr);
return ESP_OK;
}
esp_err_t spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc, TickType_t ticks_to_wait)
{
BaseType_t r;
SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG);
r=xQueueReceive(spihost[host]->ret_queue, (void*)trans_desc, ticks_to_wait);
if (!r) return ESP_ERR_TIMEOUT;
return ESP_OK;
}
esp_err_t spi_slave_transmit(spi_host_device_t host, spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait)
{
esp_err_t ret;
spi_slave_transaction_t *ret_trans;
//ToDo: check if any spi transfers in flight
ret=spi_slave_queue_trans(host, trans_desc, ticks_to_wait);
if (ret!=ESP_OK) return ret;
ret=spi_slave_get_trans_result(host, &ret_trans, ticks_to_wait);
if (ret!=ESP_OK) return ret;
assert(ret_trans==trans_desc);
return ESP_OK;
}
#ifdef DEBUG_SLAVE
static void dumpregs(spi_dev_t *hw) {
ets_printf("***REG DUMP ***\n");
ets_printf("mosi_dlen : %08X\n", hw->mosi_dlen.val);
ets_printf("miso_dlen : %08X\n", hw->miso_dlen.val);
ets_printf("slv_wrbuf_dlen : %08X\n", hw->slv_wrbuf_dlen.val);
ets_printf("slv_rdbuf_dlen : %08X\n", hw->slv_rdbuf_dlen.val);
ets_printf("slave : %08X\n", hw->slave.val);
ets_printf("slv_rdata_bit : %x\n", hw->slv_rd_bit.slv_rdata_bit);
ets_printf("dma_rx_status : %08X\n", hw->dma_rx_status);
ets_printf("dma_tx_status : %08X\n", hw->dma_tx_status);
}
static void dumpll(lldesc_t *ll) {
ets_printf("****LL DUMP****\n");
ets_printf("Size %d\n", ll->size);
ets_printf("Len: %d\n", ll->length);
ets_printf("Owner: %s\n", ll->owner?"dma":"cpu");
}
#endif
static void IRAM_ATTR spi_slave_restart_after_dmareset(void *arg)
{
spi_slave_t *host=(spi_slave_t*)arg;
esp_intr_enable(host->intr);
}
//This is run in interrupt context and apart from initialization and destruction, this is the only code
//touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are
//no muxes in this code.
static void IRAM_ATTR spi_intr(void *arg)
{
BaseType_t r;
BaseType_t do_yield=pdFALSE;
spi_slave_transaction_t *trans=NULL;
spi_slave_t *host=(spi_slave_t*)arg;
#ifdef DEBUG_SLAVE
dumpregs(host->hw);
if (host->dmadesc_rx) dumpll(&host->dmadesc_rx[0]);
#endif
//Ignore all but the trans_done int.
if (!host->hw->slave.trans_done) return;
if (host->cur_trans) {
if (host->dma_chan == 0 && host->cur_trans->rx_buffer) {
//Copy result out
uint32_t *data=host->cur_trans->rx_buffer;
for (int x=0; x<host->cur_trans->length; x+=32) {
uint32_t word;
int len=host->cur_trans->length-x;
if (len>32) len=32;
word=host->hw->data_buf[(x/32)];
memcpy(&data[x/32], &word, (len+7)/8);
}
} else if (host->dma_chan != 0 && host->cur_trans->rx_buffer) {
int i;
//In case CS goes high too soon, the transfer is aborted while the DMA channel still thinks it's going. This
//leads to issues later on, so in that case we need to reset the channel. The state can be detected because
//the DMA system doesn't give back the offending descriptor; the owner is still set to DMA.
for (i=0; host->dmadesc_rx[i].eof==0 && host->dmadesc_rx[i].owner==0; i++) ;
if (host->dmadesc_rx[i].owner) {
spicommon_dmaworkaround_req_reset(host->dma_chan, spi_slave_restart_after_dmareset, host);
}
}
if (host->cfg.post_trans_cb) host->cfg.post_trans_cb(host->cur_trans);
//Okay, transaction is done.
//Return transaction descriptor.
xQueueSendFromISR(host->ret_queue, &host->cur_trans, &do_yield);
host->cur_trans=NULL;
}
if (host->dma_chan!=0) {
spicommon_dmaworkaround_idle(host->dma_chan);
if (spicommon_dmaworkaround_reset_in_progress()) {
//We need to wait for the reset to complete. Disable int (will be re-enabled on reset callback) and exit isr.
esp_intr_disable(host->intr);
if (do_yield) portYIELD_FROM_ISR();
return;
}
}
//Grab next transaction
r=xQueueReceiveFromISR(host->trans_queue, &trans, &do_yield);
if (!r) {
//No packet waiting. Disable interrupt.
esp_intr_disable(host->intr);
} else {
//We have a transaction. Send it.
host->hw->slave.trans_done=0; //clear int bit
host->cur_trans=trans;
if (host->dma_chan != 0) {
spicommon_dmaworkaround_transfer_active(host->dma_chan);
host->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
host->hw->dma_out_link.start=0;
host->hw->dma_in_link.start=0;
host->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
host->hw->dma_conf.out_data_burst_en=0;
host->hw->dma_conf.indscr_burst_en=0;
host->hw->dma_conf.outdscr_burst_en=0;
//Fill DMA descriptors
if (trans->rx_buffer) {
host->hw->user.usr_miso_highpart=0;
spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->length+7)/8), trans->rx_buffer, true);
host->hw->dma_in_link.addr=(int)(&host->dmadesc_rx[0]) & 0xFFFFF;
host->hw->dma_in_link.start=1;
}
if (trans->tx_buffer) {
spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length+7)/8, trans->tx_buffer, false);
host->hw->user.usr_mosi_highpart=0;
host->hw->dma_out_link.addr=(int)(&host->dmadesc_tx[0]) & 0xFFFFF;
host->hw->dma_out_link.start=1;
}
host->hw->slave.sync_reset=1;
host->hw->slave.sync_reset=0;
} else {
//No DMA. Turn off SPI and copy data to transmit buffers.
host->hw->cmd.usr=0;
host->hw->slave.sync_reset=1;
host->hw->slave.sync_reset=0;
host->hw->user.usr_miso_highpart=0;
host->hw->user.usr_mosi_highpart=0;
if (trans->tx_buffer) {
const uint32_t *data=host->cur_trans->tx_buffer;
for (int x=0; x<trans->length; x+=32) {
uint32_t word;
memcpy(&word, &data[x/32], 4);
host->hw->data_buf[(x/32)]=word;
}
}
}
host->hw->slv_rd_bit.slv_rdata_bit=0;
host->hw->slv_wrbuf_dlen.bit_len=trans->length-1;
host->hw->slv_rdbuf_dlen.bit_len=trans->length-1;
host->hw->mosi_dlen.usr_mosi_dbitlen=trans->length-1;
host->hw->miso_dlen.usr_miso_dbitlen=trans->length-1;
host->hw->user.usr_mosi=(trans->tx_buffer==NULL)?0:1;
host->hw->user.usr_miso=(trans->rx_buffer==NULL)?0:1;
//Kick off transfer
host->hw->cmd.usr=1;
if (host->cfg.post_setup_cb) host->cfg.post_setup_cb(trans);
}
if (do_yield) portYIELD_FROM_ISR();
}