esp-idf/components/driver/uart.c
Wangjialin 8d6b782327 Modify UART driver:
1. Add a ring buffer for UART TX.
    If the buffer size is set to zero, driver will not use a buffer. But we need a task to send data from buffer to fifo. I tried directly copy data in ISR, but the code looked too long for ISR.
2. Modify the format in uart.h
2016-11-01 09:22:09 +08:00

1034 lines
41 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "esp_log.h"
#include "malloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/ringbuf.h"
#include "soc/dport_reg.h"
#include "rom/ets_sys.h"
#include "soc/uart_struct.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#include "soc/uart_struct.h"
const char* UART_TAG = "UART";
#define UART_CHECK(a, str) if (!(a)) { \
ESP_LOGE(UART_TAG,"%s:%d (%s):%s\n", __FILE__, __LINE__, __FUNCTION__, str); \
return ESP_FAIL; \
}
#define UART_EMPTY_THRESH_DEFAULT (10)
#define UART_FULL_THRESH_DEFAULT (120)
#define UART_TOUT_THRESH_DEFAULT (10)
#define UART_TX_TASK_DEPTH_DEFAULT (256*2+64)
#define UART_TX_TASK_PRIO_DEFAULT (10)
#define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
#define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
#define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
#define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
typedef struct {
uart_port_t uart_num;
SemaphoreHandle_t tx_fifo_sem;
SemaphoreHandle_t tx_mutex;
SemaphoreHandle_t tx_buffer_mutex;
SemaphoreHandle_t tx_done_sem;
SemaphoreHandle_t tx_brk_sem;
SemaphoreHandle_t rx_mux;
QueueHandle_t xQueueUart;
int queue_size;
int intr_num;
int rx_buf_size;
ringbuf_type_t rx_buf_type;
RingbufHandle_t rx_ring_buf;
int tx_buf_size;
RingbufHandle_t tx_ring_buf;
TaskHandle_t tx_task_handle;
bool buffer_full_flg;
bool tx_waiting;
int cur_remain;
uint8_t* rd_ptr;
uint8_t* head_ptr;
uint8_t data_buf[UART_FIFO_LEN];
uint8_t data_len;
} uart_obj_t;
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
static uart_dev_t* UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((data_bit < UART_DATA_MAX_BITS), "data bit error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.bit_num = data_bit;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
*(data_bit) = UART[uart_num]->conf0.bit_num;
return ESP_OK;
}
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.stop_bit_num = stop_bit;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
(*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
return ESP_OK;
}
esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.parity = parity_mode & 0x1;
UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
int val = UART[uart_num]->conf0.val;
if(val & UART_PARITY_EN_M) {
if(val & UART_PARITY_M) {
(*parity_mode) = UART_PARITY_ODD;
} else {
(*parity_mode) = UART_PARITY_EVEN;
}
} else {
(*parity_mode) = UART_PARITY_DISABLE;
}
return ESP_OK;
}
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error");
uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->clk_div.div_int = clk_div >> 4;
UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
(*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
return ESP_OK;
}
esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((((inverse_mask & UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error");
UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
UART[uart_num]->conf1.rx_flow_en = 1;
} else {
UART[uart_num]->conf1.rx_flow_en = 0;
}
if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
UART[uart_num]->conf0.tx_flow_en = 1;
} else {
UART[uart_num]->conf0.tx_flow_en = 0;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
if(UART[uart_num]->conf1.rx_flow_en) {
val |= UART_HW_FLOWCTRL_RTS;
}
if(UART[uart_num]->conf0.tx_flow_en) {
val |= UART_HW_FLOWCTRL_CTS;
}
(*flow_ctrl) = val;
return ESP_OK;
}
static esp_err_t uart_reset_fifo(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.rxfifo_rst = 1;
UART[uart_num]->conf0.rxfifo_rst = 0;
UART[uart_num]->conf0.txfifo_rst = 1;
UART[uart_num]->conf0.txfifo_rst = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
//intr_clr register is write-only
UART[uart_num]->int_clr.val = clr_mask;
return ESP_OK;
}
esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_ena.txfifo_empty = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.txfifo_empty = 1;
UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
ESP_INTR_ENABLE(p_uart_obj[uart_num]->intr_num);
return ESP_OK;
}
esp_err_t uart_isr_register(uart_port_t uart_num, uint8_t uart_intr_num, void (*fn)(void*), void * arg)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
ESP_INTR_DISABLE(uart_intr_num);
switch(uart_num) {
case UART_NUM_1:
intr_matrix_set(xPortGetCoreID(), ETS_UART1_INTR_SOURCE, uart_intr_num);
break;
case UART_NUM_2:
intr_matrix_set(xPortGetCoreID(), ETS_UART2_INTR_SOURCE, uart_intr_num);
break;
case UART_NUM_0:
default:
intr_matrix_set(xPortGetCoreID(), ETS_UART0_INTR_SOURCE, uart_intr_num);
break;
}
xt_set_interrupt_handler(uart_intr_num, fn, arg);
ESP_INTR_ENABLE(uart_intr_num);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
//internal signal can be output to multiple GPIO pads
//only one GPIO pad can connect with input signal
esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error");
UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error");
UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error");
UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error");
int tx_sig, rx_sig, rts_sig, cts_sig;
switch(uart_num) {
case UART_NUM_0:
tx_sig = U0TXD_OUT_IDX;
rx_sig = U0RXD_IN_IDX;
rts_sig = U0RTS_OUT_IDX;
cts_sig = U0CTS_IN_IDX;
break;
case UART_NUM_1:
tx_sig = U1TXD_OUT_IDX;
rx_sig = U1RXD_IN_IDX;
rts_sig = U1RTS_OUT_IDX;
cts_sig = U1CTS_IN_IDX;
break;
case UART_NUM_2:
tx_sig = U2TXD_OUT_IDX;
rx_sig = U2RXD_IN_IDX;
rts_sig = U2RTS_OUT_IDX;
cts_sig = U2CTS_IN_IDX;
break;
case UART_NUM_MAX:
default:
tx_sig = U0TXD_OUT_IDX;
rx_sig = U0RXD_IN_IDX;
rts_sig = U0RTS_OUT_IDX;
cts_sig = U0CTS_IN_IDX;
break;
}
if(tx_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
}
if(rx_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
gpio_matrix_in(rx_io_num, rx_sig, 0);
}
if(rts_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
}
if(cts_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
gpio_matrix_in(cts_io_num, cts_sig, 0);
}
return ESP_OK;
}
esp_err_t uart_set_rts(uart_port_t uart_num, int level)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control\n");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.sw_rts = level & 0x1;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.sw_dtr = level & 0x1;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_param_config(uart_port_t uart_num, uart_config_t *uart_config)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((uart_config), "param null\n");
if(uart_num == UART_NUM_0) {
periph_module_enable(PERIPH_UART0_MODULE);
} else if(uart_num == UART_NUM_1) {
periph_module_enable(PERIPH_UART1_MODULE);
} else if(uart_num == UART_NUM_2) {
periph_module_enable(PERIPH_UART2_MODULE);
}
uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
uart_set_baudrate(uart_num, uart_config->baud_rate);
UART[uart_num]->conf0.val = (
(uart_config->parity << UART_PARITY_S)
| (uart_config->stop_bits << UART_STOP_BIT_NUM_S)
| (uart_config->data_bits << UART_BIT_NUM_S)
| ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
| UART_TICK_REF_ALWAYS_ON_M);
return ESP_OK;
}
esp_err_t uart_intr_config(uart_port_t uart_num, uart_intr_config_t *p_intr_conf)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_intr_conf), "param null\n");
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.val = UART_INTR_MASK;
if(p_intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
UART[uart_num]->conf1.rx_tout_thrhd = ((p_intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
UART[uart_num]->conf1.rx_tout_en = 1;
} else {
UART[uart_num]->conf1.rx_tout_en = 0;
}
if(p_intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
UART[uart_num]->conf1.rxfifo_full_thrhd = p_intr_conf->rxfifo_full_thresh;
}
if(p_intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
UART[uart_num]->conf1.txfifo_empty_thrhd = p_intr_conf->txfifo_empty_intr_thresh;
}
UART[uart_num]->int_ena.val = p_intr_conf->intr_enable_mask;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_FAIL;
}
//internal isr handler for default driver code.
static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
{
uart_obj_t *p_uart = (uart_obj_t*) param;
uint8_t uart_num = p_uart->uart_num;
uart_dev_t* uart_reg = UART[uart_num];
uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
static int rx_fifo_len = 0;
uart_event_t uart_event;
portBASE_TYPE HPTaskAwoken = 0;
while(uart_intr_status != 0x0) {
buf_idx = 0;
uart_event.type = UART_EVENT_MAX;
if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.txfifo_empty = 0;
uart_reg->int_clr.txfifo_empty = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
if(p_uart->tx_waiting == true) {
p_uart->tx_waiting = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, NULL);
}
}
else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
if(p_uart->buffer_full_flg == false) {
//Get the buffer from the FIFO
rx_fifo_len = uart_reg->status.rxfifo_cnt;
p_uart->data_len = rx_fifo_len;
memset(p_uart->data_buf, 0, sizeof(p_uart->data_buf));
while(buf_idx < rx_fifo_len) {
p_uart->data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
}
//After Copying the Data From FIFO ,Clear intr_status
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_clr.rxfifo_tout = 1;
uart_reg->int_clr.rxfifo_full = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_DATA;
uart_event.data.size = rx_fifo_len;
if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->data_buf, p_uart->data_len, &HPTaskAwoken)) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.rxfifo_full = 0;
uart_reg->int_ena.rxfifo_tout = 0;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
p_uart->buffer_full_flg = true;
uart_event.type = UART_BUFFER_FULL;
} else {
uart_event.type = UART_DATA;
}
} else {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.rxfifo_full = 0;
uart_reg->int_ena.rxfifo_tout = 0;
uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_BUFFER_FULL;
}
} else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->conf0.rxfifo_rst = 1;
uart_reg->conf0.rxfifo_rst = 0;
uart_reg->int_clr.rxfifo_ovf = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_FIFO_OVF;
} else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
uart_reg->int_clr.brk_det = 1;
uart_event.type = UART_BREAK;
} else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
uart_reg->int_clr.parity_err = 1;
uart_event.type = UART_FRAME_ERR;
} else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
uart_reg->int_clr.frm_err = 1;
uart_event.type = UART_PARITY_ERR;
} else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->conf0.txd_brk = 0;
uart_reg->int_ena.tx_brk_done = 0;
uart_reg->int_clr.tx_brk_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
} else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_brk_idle_done = 0;
uart_reg->int_clr.tx_brk_idle_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
} else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_done = 0;
uart_reg->int_clr.tx_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
}
else {
uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
uart_event.type = UART_EVENT_MAX;
}
if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
}
uart_intr_status = uart_reg->int_st.val;
}
}
/**************************************************************/
esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
BaseType_t res;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
//Take tx_mutex
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
ticks_to_wait = ticks_end - xTaskGetTickCount();
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
ticks_to_wait = ticks_end - xTaskGetTickCount();
if(UART[uart_num]->status.txfifo_cnt == 0) {
xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
return ESP_OK;
}
uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
return ESP_ERR_TIMEOUT;
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
return ESP_OK;
}
static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
{
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->idle_conf.tx_brk_num = break_num;
UART[uart_num]->conf0.txd_brk = 1;
UART[uart_num]->int_clr.tx_brk_done = 1;
UART[uart_num]->int_ena.tx_brk_done = 1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
//Fill UART tx_fifo and return a number,
//This function by itself is not thread-safe, always call from within a muxed section.
static int uart_fill_fifo(uart_port_t uart_num, char* buffer, uint32_t len)
{
uint8_t i = 0;
uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
for(i = 0; i < copy_cnt; i++) {
WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
}
return copy_cnt;
}
int uart_tx_chars(uart_port_t uart_num, char* buffer, uint32_t len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
UART_CHECK(buffer, "buffer null");
if(len == 0) {
return 0;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)portMAX_DELAY);
int tx_len = uart_fill_fifo(uart_num, buffer, len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
return tx_len;
}
static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
UART_CHECK(src, "buffer null");
if(size == 0) {
return 0;
}
//lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)portMAX_DELAY);
size_t original_size = size;
while(size) {
//semaphore for tx_fifo available
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
if(sent < size) {
p_uart_obj[uart_num]->tx_waiting = true;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
size -= sent;
src += sent;
}
}
if(brk_en) {
uart_set_break(uart_num, brk_len);
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
return original_size;
}
static void uart_tx_task(void* arg)
{
uart_obj_t* p_uart = (uart_obj_t*) arg;
size_t size;
uart_event_t evt;
for(;;) {
char* data = (char*) xRingbufferReceive(p_uart->tx_ring_buf, &size, portMAX_DELAY);
if(data == NULL) {
continue;
}
memcpy(&evt, data, sizeof(evt));
if(evt.type == UART_DATA) {
uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 0, 0);
} else if(evt.type == UART_DATA_BREAK) {
uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 1, evt.data.brk_len);
}
vRingbufferReturnItem(p_uart->tx_ring_buf, data);
}
vTaskDelete(NULL);
}
int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error");
UART_CHECK(src, "buffer null");
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size + sizeof(uart_event_t))) {
uart_event_t *evt = (uart_event_t*) malloc(sizeof(uart_event_t) + size);
if(evt == NULL) {
ESP_LOGE(UART_TAG, "UART EVT MALLOC ERROR\n");
return -1;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
evt->type = UART_DATA;
evt->data.size = size;
memcpy(evt->data.data, src, size);
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) evt, sizeof(uart_event_t) + size, portMAX_DELAY);
free(evt);
evt = NULL;
xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
return size;
} else {
ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[0], SEND DIRECTLY\n");
return uart_tx_all(uart_num, src, size, 0, 0);
}
} else {
return uart_tx_all(uart_num, src, size, 0, 0);
}
}
int uart_tx_all_chars_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
UART_CHECK((size > 0), "uart size error");
UART_CHECK((src), "uart data null");
UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error");
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size)) {
uart_event_t *evt = (uart_event_t*) malloc(sizeof(uart_event_t) + size);
if(evt == NULL) {
return -1;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
evt->type = UART_DATA_BREAK;
evt->data.size = size;
evt->data.brk_len = brk_len;
memcpy(evt->data.data, src, size);
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) evt, sizeof(uart_event_t) + size, portMAX_DELAY);
free(evt);
evt = NULL;
xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
return size;
} else {
ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[1], SEND DIRECTLY\n");
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
} else {
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
}
int uart_read_char(uart_port_t uart_num, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
uint8_t* data;
size_t size;
int val;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
return -1;
}
if(p_uart_obj[uart_num]->cur_remain == 0) {
ticks_to_wait = ticks_end - xTaskGetTickCount();
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
if(data) {
p_uart_obj[uart_num]->head_ptr = data;
p_uart_obj[uart_num]->rd_ptr = data;
p_uart_obj[uart_num]->cur_remain = size;
} else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return -1;
}
}
val = *(p_uart_obj[uart_num]->rd_ptr);
p_uart_obj[uart_num]->rd_ptr++;
p_uart_obj[uart_num]->cur_remain--;
if(p_uart_obj[uart_num]->cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr);
p_uart_obj[uart_num]->head_ptr = NULL;
p_uart_obj[uart_num]->rd_ptr = NULL;
if(p_uart_obj[uart_num]->buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1);
if(res == pdTRUE) {
p_uart_obj[uart_num]->buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return val;
}
int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((buf), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
uint8_t* data = NULL;
size_t size;
size_t copy_len = 0;
int len_tmp;
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
return -1;
}
while(length) {
if(p_uart_obj[uart_num]->cur_remain == 0) {
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
if(data) {
p_uart_obj[uart_num]->head_ptr = data;
p_uart_obj[uart_num]->rd_ptr = data;
p_uart_obj[uart_num]->cur_remain = size;
} else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
}
if(p_uart_obj[uart_num]->cur_remain > length) {
len_tmp = length;
} else {
len_tmp = p_uart_obj[uart_num]->cur_remain;
}
memcpy(buf + copy_len, p_uart_obj[uart_num]->rd_ptr, len_tmp);
p_uart_obj[uart_num]->rd_ptr += len_tmp;
p_uart_obj[uart_num]->cur_remain -= len_tmp;
copy_len += len_tmp;
length -= len_tmp;
if(p_uart_obj[uart_num]->cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr);
p_uart_obj[uart_num]->head_ptr = NULL;
p_uart_obj[uart_num]->rd_ptr = NULL;
if(p_uart_obj[uart_num]->buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1);
if(res == pdTRUE) {
p_uart_obj[uart_num]->buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
esp_err_t uart_flush(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
uart_obj_t* p_uart = p_uart_obj[uart_num];
uint8_t* data;
size_t size;
//rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
while(true) {
if(p_uart->head_ptr) {
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->head_ptr);
p_uart->rd_ptr = NULL;
p_uart->cur_remain = 0;
p_uart->head_ptr = NULL;
}
data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
if(data == NULL) {
break;
}
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
}
p_uart->rd_ptr = NULL;
p_uart->cur_remain = 0;
p_uart->head_ptr = NULL;
xSemaphoreGive(p_uart->rx_mux);
xSemaphoreTake(p_uart->tx_mutex, (portTickType)portMAX_DELAY);
do {
data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
if(data == NULL) {
break;
}
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
} while(1);
xSemaphoreGive(p_uart->tx_mutex);
uart_wait_tx_done(uart_num, portMAX_DELAY);
uart_reset_fifo(uart_num);
return ESP_OK;
}
//-----------------------------------
//Should not enable hw flow control the debug print port.
//Use uart_tx_all_chars() as a thread-safe function to send data.
static int s_uart_print_nport = UART_NUM_0;
static void uart2_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_2, (const char*)&chr, 1);
}
static void uart1_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_1, (const char*)&chr, 1);
}
static void uart0_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_0, (const char*)&chr, 1);
}
static void uart_ignore_char(char chr)
{
}
//Only effective to ets_printf function, not ESP_LOGX macro.
esp_err_t uart_set_print_port(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((p_uart_obj[uart_num]), "UART driver error");
s_uart_print_nport = uart_num;
switch(s_uart_print_nport) {
case UART_NUM_0:
ets_install_putc1(uart0_write_char);
break;
case UART_NUM_1:
ets_install_putc1(uart1_write_char);
break;
case UART_NUM_2:
ets_install_putc1(uart2_write_char);
break;
case UART_NUM_MAX:
default:
ets_install_putc1(uart_ignore_char);
break;
}
return ESP_OK;
}
int uart_get_print_port()
{
return s_uart_print_nport;
}
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue, ringbuf_type_t rx_buf_type)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
UART_CHECK((rx_buffer_size > 0), "uart rx buffer length error\n");
if(p_uart_obj[uart_num] == NULL) {
ESP_INTR_DISABLE(uart_intr_num);
p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
if(p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "UART driver malloc error\n");
return ESP_FAIL;
}
p_uart_obj[uart_num]->uart_num = uart_num;
p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
p_uart_obj[uart_num]->tx_mutex = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->tx_buffer_mutex = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->intr_num = uart_intr_num;
p_uart_obj[uart_num]->queue_size = queue_size;
if(uart_queue) {
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
*((QueueHandle_t*) uart_queue) = p_uart_obj[uart_num]->xQueueUart;
ESP_LOGI(UART_TAG, "queue free spaces: %d\n", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
} else {
p_uart_obj[uart_num]->xQueueUart = NULL;
}
p_uart_obj[uart_num]->buffer_full_flg = false;
p_uart_obj[uart_num]->tx_waiting = false;
p_uart_obj[uart_num]->rd_ptr = NULL;
p_uart_obj[uart_num]->cur_remain = 0;
p_uart_obj[uart_num]->head_ptr = NULL;
p_uart_obj[uart_num]->rx_buf_type = rx_buf_type;
p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, rx_buf_type);
if(tx_buffer_size > 0) {
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
xTaskCreate(uart_tx_task, "uart_tx_task", UART_TX_TASK_DEPTH_DEFAULT, (void*)p_uart_obj[uart_num], UART_TX_TASK_PRIO_DEFAULT, &p_uart_obj[uart_num]->tx_task_handle);
} else {
p_uart_obj[uart_num]->tx_ring_buf = NULL;
p_uart_obj[uart_num]->tx_buf_size = 0;
p_uart_obj[uart_num]->tx_task_handle = NULL;
}
} else {
ESP_LOGE(UART_TAG, "UART driver already installed\n");
return ESP_FAIL;
}
uart_isr_register(uart_num, uart_intr_num, uart_rx_intr_handler_default, p_uart_obj[uart_num]);
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
| UART_RXFIFO_TOUT_INT_ENA_M
| UART_FRM_ERR_INT_ENA_M
| UART_RXFIFO_OVF_INT_ENA_M
| UART_BRK_DET_INT_ENA_M,
.rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
.rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
.txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
};
uart_intr_config(uart_num, &uart_intr);
ESP_INTR_ENABLE(uart_intr_num);
return ESP_OK;
}
//Make sure no other tasks are still using UART before you call this function
esp_err_t uart_driver_delete(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
if(p_uart_obj[uart_num] == NULL) {
ESP_LOGI(UART_TAG, "ALREADY NULL\n");
return ESP_OK;
}
ESP_INTR_DISABLE(p_uart_obj[uart_num]->intr_num);
uart_disable_rx_intr(uart_num);
uart_disable_tx_intr(uart_num);
uart_isr_register(uart_num, p_uart_obj[uart_num]->intr_num, NULL, NULL);
if(p_uart_obj[uart_num]->tx_task_handle) {
vTaskDelete(p_uart_obj[uart_num]->tx_task_handle);
p_uart_obj[uart_num]->tx_task_handle = NULL;
}
if(p_uart_obj[uart_num]->tx_fifo_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_fifo_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_done_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
p_uart_obj[uart_num]->tx_done_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_brk_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
p_uart_obj[uart_num]->tx_brk_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_mutex) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_mutex);
p_uart_obj[uart_num]->tx_mutex = NULL;
}
if(p_uart_obj[uart_num]->tx_buffer_mutex) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_buffer_mutex);
p_uart_obj[uart_num]->tx_buffer_mutex = NULL;
}
if(p_uart_obj[uart_num]->rx_mux) {
vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
p_uart_obj[uart_num]->rx_mux = NULL;
}
if(p_uart_obj[uart_num]->xQueueUart) {
vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
p_uart_obj[uart_num]->xQueueUart = NULL;
}
if(p_uart_obj[uart_num]->rx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
p_uart_obj[uart_num]->rx_ring_buf = NULL;
}
if(p_uart_obj[uart_num]->tx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
p_uart_obj[uart_num]->tx_ring_buf = NULL;
}
free(p_uart_obj[uart_num]);
p_uart_obj[uart_num] = NULL;
return ESP_OK;
}