esp-idf/components/spi_flash/include/esp_private/partition_linux.h
Martin Vychodil 9a5f39ec2c spi_flash: Linux target emulation of Partition API
Emulator of Partition API layer for Linux OS
2022-03-04 14:36:46 +00:00

93 lines
3.6 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file partition_linux.h
*
* @brief Private API functions used for Linux-target emulation of the Partition APIs (host-side testing)
*/
/**
* @brief Partition type to string conversion routine
*
* @param type Partition type, see esp_partition_type_t
*
* @return string equivalent of given partition type or "unknown" on mismatch
*/
const char* esp_partition_type_to_str(const uint32_t type);
/**
* @brief Partition subtype to string conversion routine
*
* @param type Partition type, see esp_partition_type_t
* @param subtype Partition subtype, see esp_partition_subtype_t
*
* @return string equivalent of given partition subtype or "unknown" on mismatch
*/
const char *esp_partition_subtype_to_str(const uint32_t type, const uint32_t subtype);
/**
* @brief Creates memory emulation of SPI FLASH device (Linux host)
*
* The function creates a memory buffer to emulate SPI FLASH device and provides a pointer to its beginning, in order
* to allow relevant Partition APIs run in host-emulated environment without any code change.
*
* The emulation buffer is actually a disk file mapped to the host memory, current version implements the following:
* 1. create temporary file /tmp/idf-partition-XXXXXX (fixed size 4MB)
* 2. mmap() whole file to the memory and set its contents to all 1s (SPI NOR flash default)
* 3. upload build/partition_table/partition-table.bin (hard-wired path for now) to ESP_PARTITION_TABLE_OFFSET
* (from the beginning of the memory buffer, ie to the same offset as in real SPI FLASH)
* 4. [optional: iterate through the partitions uploaded and print esp_partition_info_t details for each]
* 5. set part_desc_addr_start[out] parameter to the memory buffer starting address
*
* The pointer returned in part_desc_addr_start is then used as it was regular SPI FLASH address.
*
* NOTES:
* 1. the temporary file generated is not deleted automatically - the cleanup happens during the next host system reset
* 2. the mmapped() section remains active until esp_partition_file_unmmap() is called
* 3. mmap() is called with MAP_SHARED so the emulated SPI FLASH can be shared among processes
*
* @param[out] part_desc_addr_start output pointer to receive memory SPI FLASH buffer address
*
* @return
* - ESP_OK: Operation successful
* - ESP_ERR_NOT_FINISHED: Failed to generate temporary file
* - ESP_ERR_INVALID_SIZE (one of the following):
* - Failed to resize temporary file to required value
* - Failed to set filepointer in partition-table.bin
* - ESP_ERR_NO_MEM: Failed to mmap() the temporary file into the memory
* - ESP_ERR_NOT_FOUND: Couldn't open the partition_table.bin file
* - ESP_ERR_INVALID_STATE: Failed to upload partition_table into the memory
*/
esp_err_t esp_partition_file_mmap(const uint8_t **part_desc_addr_start);
/**
* @brief Releases the memory of emulated SPI FLASH device (Linux host)
*
* The function releases the memory block previously allocated by esp_partition_file_mmap().
* The buffer is freed by calling munmap() with emulated_buffer, buffer_size
*
* @return
* - ESP_OK: Operation successful
* - ESP_ERR_NO_MEM: The memory buffer was not allocated
* - ESP_ERR_INVALID_SIZE: The buffer size was 0
* - ESP_ERR_INVALID_RESPONSE: Failed to munmap() the emulation file from memory
*/
esp_err_t esp_partition_file_munmap(void);
#ifdef __cplusplus
}
#endif