mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
227 lines
6.1 KiB
C
227 lines
6.1 KiB
C
/*
|
||
* AliGenie - Example
|
||
*
|
||
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
|
||
*
|
||
* SPDX-License-Identifier: Unlicense OR CC0-1.0
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
|
||
#include "driver/gpio.h"
|
||
#include "esp_log.h"
|
||
|
||
#include "iot_button.h"
|
||
#include "light_driver.h"
|
||
|
||
#include "genie_event.h"
|
||
|
||
#define BUTTON_ON_OFF 0 /* on/off button */
|
||
#define BUTTON_ACTIVE_LEVEL 0
|
||
|
||
static const char *TAG = "board";
|
||
|
||
static uint32_t dev_on_btn_num = BUTTON_ON_OFF;
|
||
|
||
extern void user_genie_event_handle(genie_event_t event, void *p_arg);
|
||
|
||
void button_tap_cb(void* arg)
|
||
{
|
||
user_genie_event_handle(GENIE_EVT_BUTTON_TAP, NULL);
|
||
}
|
||
|
||
static void board_led_init(void)
|
||
{
|
||
/**
|
||
* NOTE:
|
||
* If the module has SPI flash, GPIOs 6-11 are connected to the module’s integrated SPI flash and PSRAM.
|
||
* If the module has PSRAM, GPIOs 16 and 17 are connected to the module’s integrated PSRAM.
|
||
*/
|
||
light_driver_config_t driver_config = {
|
||
.gpio_red = CONFIG_LIGHT_GPIO_RED,
|
||
.gpio_green = CONFIG_LIGHT_GPIO_GREEN,
|
||
.gpio_blue = CONFIG_LIGHT_GPIO_BLUE,
|
||
.gpio_cold = CONFIG_LIGHT_GPIO_COLD,
|
||
.gpio_warm = CONFIG_LIGHT_GPIO_WARM,
|
||
.fade_period_ms = CONFIG_LIGHT_FADE_PERIOD_MS,
|
||
.blink_period_ms = CONFIG_LIGHT_BLINK_PERIOD_MS,
|
||
};
|
||
|
||
/**
|
||
* @brief Light driver initialization
|
||
*/
|
||
ESP_ERROR_CHECK(light_driver_init(&driver_config));
|
||
light_driver_set_mode(MODE_HSL);
|
||
// light_driver_set_switch(true);
|
||
|
||
button_handle_t dev_on_off_btn = iot_button_create(BUTTON_ON_OFF, BUTTON_ACTIVE_LEVEL);
|
||
iot_button_set_evt_cb(dev_on_off_btn, BUTTON_CB_TAP, button_tap_cb, &dev_on_btn_num);
|
||
}
|
||
|
||
void board_init(void)
|
||
{
|
||
board_led_init();
|
||
}
|
||
|
||
/**
|
||
* hsl
|
||
*/
|
||
void board_led_hsl(uint8_t elem_index, uint16_t hue, uint16_t saturation, uint16_t lightness)
|
||
{
|
||
static uint16_t last_hue = 0xFFFF;
|
||
static uint16_t last_saturation = 0xFFFF;
|
||
static uint16_t last_lightness = 0xFFFF;
|
||
|
||
ESP_LOGD(TAG, "hue last state %d, state %d", last_hue, hue);
|
||
ESP_LOGD(TAG, "saturation last state %d, state %d", last_saturation, saturation);
|
||
ESP_LOGD(TAG, "lightness last state %d, state %d", last_lightness, lightness);
|
||
|
||
if(last_hue != hue || last_saturation != saturation || last_lightness != lightness ) {
|
||
last_hue = hue;
|
||
last_saturation = saturation;
|
||
last_lightness = lightness;
|
||
|
||
uint16_t actual_hue = (float)last_hue / (UINT16_MAX / 360.0);
|
||
uint8_t actual_saturation = (float)last_saturation / (UINT16_MAX / 100.0);
|
||
uint8_t actual_lightness = (float)last_lightness / (UINT16_MAX / 100.0);
|
||
|
||
ESP_LOGD(TAG, "hsl: %d, %d, %d operation", actual_hue, actual_saturation, actual_lightness);
|
||
light_driver_set_hsl(actual_hue, actual_saturation, actual_lightness);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* temperature light temp
|
||
*/
|
||
void board_led_temperature(uint8_t elem_index, uint16_t temperature)
|
||
{
|
||
static uint16_t last_temperature = 0xFFFF;
|
||
|
||
ESP_LOGD(TAG, "temperature last state %d, state %d", last_temperature, temperature);
|
||
|
||
if(last_temperature != temperature) {
|
||
last_temperature = temperature;
|
||
|
||
uint16_t actual_temperature = (float)last_temperature / (UINT16_MAX / 100.0);
|
||
ESP_LOGD(TAG, "temperature %d %%%d operation", last_temperature, actual_temperature);
|
||
light_driver_set_color_temperature(actual_temperature);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* actual lightness
|
||
*/
|
||
void board_led_lightness(uint8_t elem_index, uint16_t actual)
|
||
{
|
||
static uint16_t last_acual = 0xFFFF;
|
||
|
||
ESP_LOGD(TAG, "actual last state %d, state %d", last_acual, actual);
|
||
|
||
if(last_acual != actual) {
|
||
last_acual = actual;
|
||
|
||
uint16_t actual_lightness = (float)last_acual / (UINT16_MAX / 100.0);
|
||
ESP_LOGD(TAG, "lightness %d %%%d operation", last_acual, actual_lightness);
|
||
light_driver_set_lightness(actual_lightness);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* onoff on/off
|
||
*/
|
||
void board_led_switch(uint8_t elem_index, uint8_t onoff)
|
||
{
|
||
static uint8_t last_onoff = 0xFF;
|
||
|
||
ESP_LOGD(TAG, "onoff last state %d, state %d", last_onoff, onoff);
|
||
if(last_onoff != onoff) {
|
||
last_onoff = onoff;
|
||
if (last_onoff) {
|
||
ESP_LOGD(TAG, "onoff %d operation", last_onoff);
|
||
light_driver_set_switch(true);
|
||
} else {
|
||
ESP_LOGD(TAG, "onoff %d operation", last_onoff);
|
||
light_driver_set_switch(false);
|
||
}
|
||
}
|
||
}
|
||
|
||
#define MINDIFF (2.25e-308)
|
||
|
||
static float bt_mesh_sqrt(float square)
|
||
{
|
||
float root, last, diff;
|
||
|
||
root = square / 3.0;
|
||
diff = 1;
|
||
|
||
if (square <= 0) {
|
||
return 0;
|
||
}
|
||
|
||
do {
|
||
last = root;
|
||
root = (root + square / root) / 2.0;
|
||
diff = root - last;
|
||
} while (diff > MINDIFF || diff < -MINDIFF);
|
||
|
||
return root;
|
||
}
|
||
|
||
static int32_t bt_mesh_ceiling(float num)
|
||
{
|
||
int32_t inum = (int32_t)num;
|
||
if (num == (float)inum) {
|
||
return inum;
|
||
}
|
||
return inum + 1;
|
||
}
|
||
|
||
uint16_t convert_lightness_actual_to_linear(uint16_t actual)
|
||
{
|
||
float tmp = ((float) actual / UINT16_MAX);
|
||
return bt_mesh_ceiling(UINT16_MAX * tmp * tmp);
|
||
}
|
||
|
||
uint16_t convert_lightness_linear_to_actual(uint16_t linear)
|
||
{
|
||
return (uint16_t)(UINT16_MAX * bt_mesh_sqrt(((float) linear / UINT16_MAX)));
|
||
}
|
||
|
||
int16_t convert_temperature_to_level(uint16_t temp, uint16_t min, uint16_t max)
|
||
{
|
||
float tmp = (temp - min) * UINT16_MAX / (max - min);
|
||
return (int16_t) (tmp + INT16_MIN);
|
||
}
|
||
|
||
uint16_t covert_level_to_temperature(int16_t level, uint16_t min, uint16_t max)
|
||
{
|
||
float diff = (float) (max - min) / UINT16_MAX;
|
||
uint16_t tmp = (uint16_t) ((level - INT16_MIN) * diff);
|
||
return (uint16_t) (min + tmp);
|
||
}
|
||
|
||
/* swap octets */
|
||
void swap_buf(uint8_t *dst, const uint8_t *src, int len)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len; i++) {
|
||
dst[len - 1 - i] = src[i];
|
||
}
|
||
}
|
||
|
||
uint8_t *mac_str2hex(const char *mac_str, uint8_t *mac_hex)
|
||
{
|
||
uint32_t mac_data[6] = {0};
|
||
|
||
sscanf(mac_str, "%02x%02x%02x%02x%02x%02x",
|
||
mac_data, mac_data + 1, mac_data + 2, mac_data + 3, mac_data + 4, mac_data + 5);
|
||
|
||
for (int i = 0; i < 6; i++) {
|
||
mac_hex[i] = mac_data[i];
|
||
}
|
||
|
||
return mac_hex;
|
||
}
|