Darian Leung c2e134b775 change(xtensa): Deprecate ".../xtensa_api.h" include path
This commit deprecates the "freertos/xtensa_api.h" and "xtensa/xtensa_api.h"
include paths. Users should use "xtensa_api.h" instead.

- Replace legacy include paths
- Removed some unnecessary includes of "xtensa_api.h"
- Replaced some calls with "esp_cpu_..." equivalents
- Add warning to compatibility header
2023-12-05 18:04:52 +08:00

586 lines
18 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "sdkconfig.h"
#include <stdbool.h>
#include <stdint.h>
#include <assert.h>
#include "soc/soc_caps.h"
#ifdef __XTENSA__
#include "xtensa_api.h"
#include "xt_utils.h"
#elif __riscv
#include "riscv/rv_utils.h"
#endif
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_attr.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief CPU cycle count type
*
* This data type represents the CPU's clock cycle count
*/
typedef uint32_t esp_cpu_cycle_count_t;
/**
* @brief CPU interrupt type
*/
typedef enum {
ESP_CPU_INTR_TYPE_LEVEL = 0,
ESP_CPU_INTR_TYPE_EDGE,
ESP_CPU_INTR_TYPE_NA,
} esp_cpu_intr_type_t;
/**
* @brief CPU interrupt descriptor
*
* Each particular CPU interrupt has an associated descriptor describing that
* particular interrupt's characteristics. Call esp_cpu_intr_get_desc() to get
* the descriptors of a particular interrupt.
*/
typedef struct {
int priority; /**< Priority of the interrupt if it has a fixed priority, (-1) if the priority is configurable. */
esp_cpu_intr_type_t type; /**< Whether the interrupt is an edge or level type interrupt, ESP_CPU_INTR_TYPE_NA if the type is configurable. */
uint32_t flags; /**< Flags indicating extra details. */
} esp_cpu_intr_desc_t;
/**
* @brief Interrupt descriptor flags of esp_cpu_intr_desc_t
*/
#define ESP_CPU_INTR_DESC_FLAG_SPECIAL 0x01 /**< The interrupt is a special interrupt (e.g., a CPU timer interrupt) */
#define ESP_CPU_INTR_DESC_FLAG_RESVD 0x02 /**< The interrupt is reserved for internal use */
/**
* @brief CPU interrupt handler type
*/
typedef void (*esp_cpu_intr_handler_t)(void *arg);
/**
* @brief CPU watchpoint trigger type
*/
typedef enum {
ESP_CPU_WATCHPOINT_LOAD,
ESP_CPU_WATCHPOINT_STORE,
ESP_CPU_WATCHPOINT_ACCESS,
} esp_cpu_watchpoint_trigger_t;
/* --------------------------------------------------- CPU Control -----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
/**
* @brief Stall a CPU core
*
* @param core_id The core's ID
*/
void esp_cpu_stall(int core_id);
/**
* @brief Resume a previously stalled CPU core
*
* @param core_id The core's ID
*/
void esp_cpu_unstall(int core_id);
/**
* @brief Reset a CPU core
*
* @param core_id The core's ID
*/
void esp_cpu_reset(int core_id);
/**
* @brief Wait for Interrupt
*
* This function causes the current CPU core to execute its Wait For Interrupt
* (WFI or equivalent) instruction. After executing this function, the CPU core
* will stop execution until an interrupt occurs.
*/
void esp_cpu_wait_for_intr(void);
/* -------------------------------------------------- CPU Registers ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
/**
* @brief Get the current core's ID
*
* This function will return the ID of the current CPU (i.e., the CPU that calls
* this function).
*
* @return The current core's ID [0..SOC_CPU_CORES_NUM - 1]
*/
FORCE_INLINE_ATTR __attribute__((pure)) int esp_cpu_get_core_id(void)
{
//Note: Made "pure" to optimize for single core target
#ifdef __XTENSA__
return (int)xt_utils_get_core_id();
#else
return (int)rv_utils_get_core_id();
#endif
}
/**
* @brief Read the current stack pointer address
*
* @return Stack pointer address
*/
FORCE_INLINE_ATTR void *esp_cpu_get_sp(void)
{
#ifdef __XTENSA__
return xt_utils_get_sp();
#else
return rv_utils_get_sp();
#endif
}
/**
* @brief Get the current CPU core's cycle count
*
* Each CPU core maintains an internal counter (i.e., cycle count) that increments
* every CPU clock cycle.
*
* @return Current CPU's cycle count, 0 if not supported.
*/
FORCE_INLINE_ATTR esp_cpu_cycle_count_t esp_cpu_get_cycle_count(void)
{
#ifdef __XTENSA__
return (esp_cpu_cycle_count_t)xt_utils_get_cycle_count();
#else
return (esp_cpu_cycle_count_t)rv_utils_get_cycle_count();
#endif
}
/**
* @brief Set the current CPU core's cycle count
*
* Set the given value into the internal counter that increments every
* CPU clock cycle.
*
* @param cycle_count CPU cycle count
*/
FORCE_INLINE_ATTR void esp_cpu_set_cycle_count(esp_cpu_cycle_count_t cycle_count)
{
#ifdef __XTENSA__
xt_utils_set_cycle_count((uint32_t)cycle_count);
#else
rv_utils_set_cycle_count((uint32_t)cycle_count);
#endif
}
/**
* @brief Convert a program counter (PC) value to address
*
* If the architecture does not store the true virtual address in the CPU's PC
* or return addresses, this function will convert the PC value to a virtual
* address. Otherwise, the PC is just returned
*
* @param pc PC value
* @return Virtual address
*/
FORCE_INLINE_ATTR __attribute__((pure)) void *esp_cpu_pc_to_addr(uint32_t pc)
{
#ifdef __XTENSA__
// Xtensa stores window rotation in PC[31:30]
return (void *)((pc & 0x3fffffffU) | 0x40000000U);
#else
return (void *)pc;
#endif
}
/* ------------------------------------------------- CPU Interrupts ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// ---------------- Interrupt Descriptors ------------------
/**
* @brief Get a CPU interrupt's descriptor
*
* Each CPU interrupt has a descriptor describing the interrupt's capabilities
* and restrictions. This function gets the descriptor of a particular interrupt
* on a particular CPU.
*
* @param[in] core_id The core's ID
* @param[in] intr_num Interrupt number
* @param[out] intr_desc_ret The interrupt's descriptor
*/
void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret);
// --------------- Interrupt Configuration -----------------
/**
* @brief Set the base address of the current CPU's Interrupt Vector Table (IVT)
*
* @param ivt_addr Interrupt Vector Table's base address
*/
FORCE_INLINE_ATTR void esp_cpu_intr_set_ivt_addr(const void *ivt_addr)
{
#ifdef __XTENSA__
xt_utils_set_vecbase((uint32_t)ivt_addr);
#else
rv_utils_set_mtvec((uint32_t)ivt_addr);
#endif
}
#if SOC_INT_CLIC_SUPPORTED
/**
* @brief Set the base address of the current CPU's Interrupt Vector Table (MTVT)
*
* @param mtvt_addr Interrupt Vector Table's base address
*
* @note The MTVT table is only applicable when CLIC is supported
*/
FORCE_INLINE_ATTR void esp_cpu_intr_set_mtvt_addr(const void *mtvt_addr)
{
rv_utils_set_mtvt((uint32_t)mtvt_addr);
}
#endif //#if SOC_INT_CLIC_SUPPORTED
#if SOC_CPU_HAS_FLEXIBLE_INTC
/**
* @brief Set the interrupt type of a particular interrupt
*
* Set the interrupt type (Level or Edge) of a particular interrupt on the
* current CPU.
*
* @param intr_num Interrupt number (from 0 to 31)
* @param intr_type The interrupt's type
*/
FORCE_INLINE_ATTR void esp_cpu_intr_set_type(int intr_num, esp_cpu_intr_type_t intr_type)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
enum intr_type type = (intr_type == ESP_CPU_INTR_TYPE_LEVEL) ? INTR_TYPE_LEVEL : INTR_TYPE_EDGE;
esprv_intc_int_set_type(intr_num, type);
}
/**
* @brief Get the current configured type of a particular interrupt
*
* Get the currently configured type (i.e., level or edge) of a particular
* interrupt on the current CPU.
*
* @param intr_num Interrupt number (from 0 to 31)
* @return Interrupt type
*/
FORCE_INLINE_ATTR esp_cpu_intr_type_t esp_cpu_intr_get_type(int intr_num)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
enum intr_type type = esprv_intc_int_get_type(intr_num);
return (type == INTR_TYPE_LEVEL) ? ESP_CPU_INTR_TYPE_LEVEL : ESP_CPU_INTR_TYPE_EDGE;
}
/**
* @brief Set the priority of a particular interrupt
*
* Set the priority of a particular interrupt on the current CPU.
*
* @param intr_num Interrupt number (from 0 to 31)
* @param intr_priority The interrupt's priority
*/
FORCE_INLINE_ATTR void esp_cpu_intr_set_priority(int intr_num, int intr_priority)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
esprv_intc_int_set_priority(intr_num, intr_priority);
}
/**
* @brief Get the current configured priority of a particular interrupt
*
* Get the currently configured priority of a particular interrupt on the
* current CPU.
*
* @param intr_num Interrupt number (from 0 to 31)
* @return Interrupt's priority
*/
FORCE_INLINE_ATTR int esp_cpu_intr_get_priority(int intr_num)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
return esprv_intc_int_get_priority(intr_num);
}
#endif // SOC_CPU_HAS_FLEXIBLE_INTC
/**
* @brief Check if a particular interrupt already has a handler function
*
* Check if a particular interrupt on the current CPU already has a handler
* function assigned.
*
* @note This function simply checks if the IVT of the current CPU already has
* a handler assigned.
* @param intr_num Interrupt number (from 0 to 31)
* @return True if the interrupt has a handler function, false otherwise.
*/
FORCE_INLINE_ATTR bool esp_cpu_intr_has_handler(int intr_num)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
bool has_handler;
#ifdef __XTENSA__
has_handler = xt_int_has_handler(intr_num, esp_cpu_get_core_id());
#else
has_handler = intr_handler_get(intr_num);
#endif
return has_handler;
}
/**
* @brief Set the handler function of a particular interrupt
*
* Assign a handler function (i.e., ISR) to a particular interrupt on the
* current CPU.
*
* @note This function simply sets the handler function (in the IVT) and does
* not actually enable the interrupt.
* @param intr_num Interrupt number (from 0 to 31)
* @param handler Handler function
* @param handler_arg Argument passed to the handler function
*/
FORCE_INLINE_ATTR void esp_cpu_intr_set_handler(int intr_num, esp_cpu_intr_handler_t handler, void *handler_arg)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
#ifdef __XTENSA__
xt_set_interrupt_handler(intr_num, (xt_handler)handler, handler_arg);
#else
intr_handler_set(intr_num, (intr_handler_t)handler, handler_arg);
#endif
}
/**
* @brief Get a handler function's argument of
*
* Get the argument of a previously assigned handler function on the current CPU.
*
* @param intr_num Interrupt number (from 0 to 31)
* @return The the argument passed to the handler function
*/
FORCE_INLINE_ATTR void *esp_cpu_intr_get_handler_arg(int intr_num)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
void *handler_arg;
#ifdef __XTENSA__
handler_arg = xt_get_interrupt_handler_arg(intr_num);
#else
handler_arg = intr_handler_get_arg(intr_num);
#endif
return handler_arg;
}
// ------------------ Interrupt Control --------------------
/**
* @brief Enable particular interrupts on the current CPU
*
* @param intr_mask Bit mask of the interrupts to enable
*/
FORCE_INLINE_ATTR void esp_cpu_intr_enable(uint32_t intr_mask)
{
#ifdef __XTENSA__
xt_ints_on(intr_mask);
#else
rv_utils_intr_enable(intr_mask);
#endif
}
/**
* @brief Disable particular interrupts on the current CPU
*
* @param intr_mask Bit mask of the interrupts to disable
*/
FORCE_INLINE_ATTR void esp_cpu_intr_disable(uint32_t intr_mask)
{
#ifdef __XTENSA__
xt_ints_off(intr_mask);
#else
rv_utils_intr_disable(intr_mask);
#endif
}
/**
* @brief Get the enabled interrupts on the current CPU
*
* @return Bit mask of the enabled interrupts
*/
FORCE_INLINE_ATTR uint32_t esp_cpu_intr_get_enabled_mask(void)
{
#ifdef __XTENSA__
return xt_utils_intr_get_enabled_mask();
#else
return rv_utils_intr_get_enabled_mask();
#endif
}
/**
* @brief Acknowledge an edge interrupt
*
* @param intr_num Interrupt number (from 0 to 31)
*/
FORCE_INLINE_ATTR void esp_cpu_intr_edge_ack(int intr_num)
{
assert(intr_num >= 0 && intr_num < SOC_CPU_INTR_NUM);
#ifdef __XTENSA__
xthal_set_intclear((unsigned) (1 << intr_num));
#else
rv_utils_intr_edge_ack((unsigned) intr_num);
#endif
}
/* -------------------------------------------------- Memory Ports -----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
/**
* @brief Configure the CPU to disable access to invalid memory regions
*/
void esp_cpu_configure_region_protection(void);
/* ---------------------------------------------------- Debugging ------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------- Breakpoints/Watchpoints -----------------
#if SOC_CPU_BREAKPOINTS_NUM > 0
/**
* @brief Set and enable a hardware breakpoint on the current CPU
*
* @note This function is meant to be called by the panic handler to set a
* breakpoint for an attached debugger during a panic.
* @note Overwrites previously set breakpoint with same breakpoint number.
* @param bp_num Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM - 1]
* @param bp_addr Address to set a breakpoint on
* @return ESP_OK if breakpoint is set. Failure otherwise
*/
esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr);
/**
* @brief Clear a hardware breakpoint on the current CPU
*
* @note Clears a breakpoint regardless of whether it was previously set
* @param bp_num Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM - 1]
* @return ESP_OK if breakpoint is cleared. Failure otherwise
*/
esp_err_t esp_cpu_clear_breakpoint(int bp_num);
#endif // SOC_CPU_BREAKPOINTS_NUM > 0
/**
* @brief Set and enable a hardware watchpoint on the current CPU
*
* Set and enable a hardware watchpoint on the current CPU, specifying the
* memory range and trigger operation. Watchpoints will break/panic the CPU when
* the CPU accesses (according to the trigger type) on a certain memory range.
*
* @note Overwrites previously set watchpoint with same watchpoint number.
* On RISC-V chips, this API uses method0(Exact matching) and method1(NAPOT matching) according to the
* riscv-debug-spec-0.13 specification for address matching.
* If the watch region size is 1byte, it uses exact matching (method 0).
* If the watch region size is larger than 1byte, it uses NAPOT matching (method 1). This mode requires
* the watching region start address to be aligned to the watching region size.
*
* @param wp_num Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM - 1]
* @param wp_addr Watchpoint's base address, must be naturally aligned to the size of the region
* @param size Size of the region to watch. Must be one of 2^n and in the range of [1 ... SOC_CPU_WATCHPOINT_MAX_REGION_SIZE]
* @param trigger Trigger type
* @return ESP_ERR_INVALID_ARG on invalid arg, ESP_OK otherwise
*/
esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger);
/**
* @brief Clear a hardware watchpoint on the current CPU
*
* @note Clears a watchpoint regardless of whether it was previously set
* @param wp_num Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM - 1]
* @return ESP_OK if watchpoint was cleared. Failure otherwise.
*/
esp_err_t esp_cpu_clear_watchpoint(int wp_num);
// ---------------------- Debugger -------------------------
/**
* @brief Check if the current CPU has a debugger attached
*
* @return True if debugger is attached, false otherwise
*/
FORCE_INLINE_ATTR bool esp_cpu_dbgr_is_attached(void)
{
#ifdef __XTENSA__
return xt_utils_dbgr_is_attached();
#else
return rv_utils_dbgr_is_attached();
#endif
}
/**
* @brief Trigger a call to the current CPU's attached debugger
*/
FORCE_INLINE_ATTR void esp_cpu_dbgr_break(void)
{
#ifdef __XTENSA__
xt_utils_dbgr_break();
#else
rv_utils_dbgr_break();
#endif
}
// ---------------------- Instructions -------------------------
/**
* @brief Given the return address, calculate the address of the preceding call instruction
* This is typically used to answer the question "where was the function called from?"
* @param return_address The value of the return address register.
* Typically set to the value of __builtin_return_address(0).
* @return Address of the call instruction preceding the return address.
*/
FORCE_INLINE_ATTR intptr_t esp_cpu_get_call_addr(intptr_t return_address)
{
/* Both Xtensa and RISC-V have 2-byte instructions, so to get this right we
* should decode the preceding instruction as if it is 2-byte, check if it is a call,
* else treat it as 3 or 4 byte one. However for the cases where this function is
* used, being off by one instruction is usually okay, so this is kept simple for now.
*/
#ifdef __XTENSA__
return return_address - 3;
#else
return return_address - 4;
#endif
}
/* ------------------------------------------------------ Misc ---------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
/**
* @brief Atomic compare-and-set operation
*
* @param addr Address of atomic variable
* @param compare_value Value to compare the atomic variable to
* @param new_value New value to set the atomic variable to
* @return Whether the atomic variable was set or not
*/
bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value);
#if SOC_BRANCH_PREDICTOR_SUPPORTED
/**
* @brief Enable branch prediction
*/
FORCE_INLINE_ATTR void esp_cpu_branch_prediction_enable(void)
{
rv_utils_en_branch_predictor();
}
#endif //#if SOC_BRANCH_PREDICTOR_SUPPORTED
#ifdef __cplusplus
}
#endif