456 lines
12 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_timer.h"
#include "esp_ds.h"
#include "esp_crypto_lock.h"
#include "esp_private/esp_crypto_lock_internal.h"
#include "esp_hmac.h"
#include "esp_memory_utils.h"
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/aes.h"
#include "esp32s2/rom/sha.h"
#include "esp32s2/rom/hmac.h"
#include "soc/soc_memory_layout.h"
#else /* CONFIG_IDF_TARGET_ESP32S2 */
#include "esp_private/periph_ctrl.h"
#include "hal/ds_hal.h"
#include "hal/ds_ll.h"
#include "hal/hmac_hal.h"
#include "hal/hmac_ll.h"
#endif /* !CONFIG_IDF_TARGET_ESP32S2 */
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/digital_signature.h"
#endif
#if CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/digital_signature.h"
#endif
#if CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/digital_signature.h"
#endif
#if CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rom/digital_signature.h"
#endif
#if CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/digital_signature.h"
#endif
#if CONFIG_IDF_TARGET_ESP32P4
#include "esp32p4/rom/digital_signature.h"
#endif
struct esp_ds_context {
const ets_ds_data_t *data;
};
/**
* The vtask delay \c esp_ds_sign() is using while waiting for completion of the signing operation.
*/
#define ESP_DS_SIGN_TASK_DELAY_MS 10
#define RSA_LEN_MAX ((SOC_RSA_MAX_BIT_LEN/8) - 1)
/*
* Check that the size of esp_ds_data_t and ets_ds_data_t is the same because both structs are converted using
* raw casts.
*/
_Static_assert(sizeof(esp_ds_data_t) == sizeof(ets_ds_data_t),
"The size and structure of esp_ds_data_t and ets_ds_data_t must match exactly, they're used in raw casts");
/*
* esp_digital_signature_length_t is used in esp_ds_data_t in contrast to ets_ds_data_t, where unsigned is used.
* Check esp_digital_signature_length_t's width here because it's converted to unsigned using raw casts.
*/
_Static_assert(sizeof(esp_digital_signature_length_t) == sizeof(unsigned),
"The size of esp_digital_signature_length_t and unsigned has to be the same");
#ifdef CONFIG_IDF_TARGET_ESP32S2
static void ds_acquire_enable(void)
{
/* Lock AES, SHA and RSA peripheral */
esp_crypto_dma_lock_acquire();
esp_crypto_mpi_lock_acquire();
ets_hmac_enable();
ets_ds_enable();
}
static void ds_disable_release(void)
{
ets_ds_disable();
ets_hmac_disable();
esp_crypto_mpi_lock_release();
esp_crypto_dma_lock_release();
}
esp_err_t esp_ds_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
void *signature)
{
// Need to check signature here, otherwise the signature is only checked when the signing has finished and fails
// but the signing isn't uninitialized and the mutex is still locked.
if (!signature) {
return ESP_ERR_INVALID_ARG;
}
esp_ds_context_t *context;
esp_err_t result = esp_ds_start_sign(message, data, key_id, &context);
if (result != ESP_OK) {
return result;
}
while (esp_ds_is_busy()) {
vTaskDelay(ESP_DS_SIGN_TASK_DELAY_MS / portTICK_PERIOD_MS);
}
return esp_ds_finish_sign(signature, context);
}
esp_err_t esp_ds_start_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
esp_ds_context_t **esp_ds_ctx)
{
if (!message || !data || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
if (key_id >= HMAC_KEY_MAX) {
return ESP_ERR_INVALID_ARG;
}
if (!(data->rsa_length == ESP_DS_RSA_1024
|| data->rsa_length == ESP_DS_RSA_2048
|| data->rsa_length == ESP_DS_RSA_3072
#if SOC_RSA_MAX_BIT_LEN == 4096
|| data->rsa_length == ESP_DS_RSA_4096
#endif
)) {
return ESP_ERR_INVALID_ARG;
}
ds_acquire_enable();
// initiate hmac
int r = ets_hmac_calculate_downstream(ETS_EFUSE_BLOCK_KEY0 + (ets_efuse_block_t) key_id,
ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE);
if (r != ETS_OK) {
ds_disable_release();
return ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL;
}
esp_ds_context_t *context = malloc(sizeof(esp_ds_context_t));
if (!context) {
ds_disable_release();
return ESP_ERR_NO_MEM;
}
ets_ds_data_t *ds_data = (ets_ds_data_t *) data;
// initiate signing
ets_ds_result_t result = ets_ds_start_sign(message, ds_data);
// ETS_DS_INVALID_PARAM only happens if a parameter is NULL or data->rsa_length is wrong
// We checked all of that already
assert(result != ETS_DS_INVALID_PARAM);
if (result == ETS_DS_INVALID_KEY) {
ds_disable_release();
free(context);
return ESP_ERR_HW_CRYPTO_DS_INVALID_KEY;
}
context->data = (const ets_ds_data_t *)ds_data;
*esp_ds_ctx = context;
return ESP_OK;
}
bool esp_ds_is_busy(void)
{
return ets_ds_is_busy();
}
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx)
{
if (!signature || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
const ets_ds_data_t *ds_data = esp_ds_ctx->data;
ets_ds_result_t result = ets_ds_finish_sign(signature, ds_data);
esp_err_t return_value = ESP_OK;
// we checked all the parameters
assert(result != ETS_DS_INVALID_PARAM);
if (result == ETS_DS_INVALID_DIGEST) {
return_value = ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST;
}
if (result == ETS_DS_INVALID_PADDING) {
return_value = ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING;
}
free(esp_ds_ctx);
int res = ets_hmac_invalidate_downstream(ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE);
assert(res == ETS_OK); // should not fail if called with correct purpose
(void)res;
ds_disable_release();
return return_value;
}
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
const void *iv,
const esp_ds_p_data_t *p_data,
const void *key)
{
// p_data has to be valid, in internal memory and word aligned
if (!p_data) {
return ESP_ERR_INVALID_ARG;
}
assert(esp_ptr_internal(p_data) && esp_ptr_word_aligned(p_data));
esp_err_t result = ESP_OK;
esp_crypto_dma_lock_acquire();
ets_aes_enable();
ets_sha_enable();
ets_ds_data_t *ds_data = (ets_ds_data_t *) data;
const ets_ds_p_data_t *ds_plain_data = (const ets_ds_p_data_t *) p_data;
ets_ds_result_t ets_result = ets_ds_encrypt_params(ds_data, iv, ds_plain_data, key, ETS_DS_KEY_HMAC);
if (ets_result == ETS_DS_INVALID_PARAM) {
result = ESP_ERR_INVALID_ARG;
}
ets_sha_disable();
ets_aes_disable();
esp_crypto_dma_lock_release();
return result;
}
#else /* !CONFIG_IDF_TARGET_ESP32S2 (targets other than esp32s2) */
static void ds_acquire_enable(void)
{
esp_crypto_ds_lock_acquire();
#if CONFIG_IDF_TARGET_ESP32S3
esp_crypto_mpi_lock_acquire();
#endif
// We also enable SHA and HMAC here. SHA is used by HMAC, HMAC is used by DS.
HMAC_RCC_ATOMIC() {
hmac_ll_enable_bus_clock(true);
hmac_ll_reset_register();
}
periph_module_enable(PERIPH_SHA_MODULE);
DS_RCC_ATOMIC() {
ds_ll_enable_bus_clock(true);
ds_ll_reset_register();
}
hmac_hal_start();
}
static void ds_disable_release(void)
{
ds_hal_finish();
DS_RCC_ATOMIC() {
ds_ll_enable_bus_clock(false);
}
periph_module_disable(PERIPH_SHA_MODULE);
HMAC_RCC_ATOMIC() {
hmac_ll_enable_bus_clock(false);
}
#if CONFIG_IDF_TARGET_ESP32S3
esp_crypto_mpi_lock_release();
#endif
esp_crypto_ds_lock_release();
}
esp_err_t esp_ds_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
void *signature)
{
// Need to check signature here, otherwise the signature is only checked when the signing has finished and fails
// but the signing isn't uninitialized and the mutex is still locked.
if (!signature) {
return ESP_ERR_INVALID_ARG;
}
esp_ds_context_t *context;
esp_err_t result = esp_ds_start_sign(message, data, key_id, &context);
if (result != ESP_OK) {
return result;
}
while (esp_ds_is_busy()) {
vTaskDelay(ESP_DS_SIGN_TASK_DELAY_MS / portTICK_PERIOD_MS);
}
return esp_ds_finish_sign(signature, context);
}
esp_err_t esp_ds_start_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
esp_ds_context_t **esp_ds_ctx)
{
if (!message || !data || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
if (key_id >= HMAC_KEY_MAX) {
return ESP_ERR_INVALID_ARG;
}
if (!(data->rsa_length == ESP_DS_RSA_1024
|| data->rsa_length == ESP_DS_RSA_2048
|| data->rsa_length == ESP_DS_RSA_3072
#if SOC_RSA_MAX_BIT_LEN == 4096
|| data->rsa_length == ESP_DS_RSA_4096
#endif
)) {
return ESP_ERR_INVALID_ARG;
}
ds_acquire_enable();
// initiate hmac
uint32_t conf_error = hmac_hal_configure(HMAC_OUTPUT_DS, key_id);
if (conf_error) {
ds_disable_release();
return ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL;
}
ds_hal_start();
// check encryption key from HMAC
int64_t start_time = esp_timer_get_time();
while (ds_ll_busy() != 0) {
if ((esp_timer_get_time() - start_time) > SOC_DS_KEY_CHECK_MAX_WAIT_US) {
ds_disable_release();
return ESP_ERR_HW_CRYPTO_DS_INVALID_KEY;
}
}
esp_ds_context_t *context = malloc(sizeof(esp_ds_context_t));
if (!context) {
ds_disable_release();
return ESP_ERR_NO_MEM;
}
size_t rsa_len = (data->rsa_length + 1) * 4;
ds_hal_write_private_key_params(data->c);
ds_hal_configure_iv((uint32_t *)data->iv);
ds_hal_write_message(message, rsa_len);
// initiate signing
ds_hal_start_sign();
context->data = (const ets_ds_data_t *)data;
*esp_ds_ctx = context;
return ESP_OK;
}
bool esp_ds_is_busy(void)
{
return ds_hal_busy();
}
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx)
{
if (!signature || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
const esp_ds_data_t *data = (const esp_ds_data_t *)esp_ds_ctx->data;
unsigned rsa_len = (data->rsa_length + 1) * 4;
while (ds_hal_busy()) { }
ds_signature_check_t sig_check_result = ds_hal_read_result((uint8_t *) signature, (size_t) rsa_len);
esp_err_t return_value = ESP_OK;
if (sig_check_result == DS_SIGNATURE_MD_FAIL || sig_check_result == DS_SIGNATURE_PADDING_AND_MD_FAIL) {
return_value = ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST;
}
if (sig_check_result == DS_SIGNATURE_PADDING_FAIL) {
return_value = ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING;
}
free(esp_ds_ctx);
hmac_hal_clean();
ds_disable_release();
return return_value;
}
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
const void *iv,
const esp_ds_p_data_t *p_data,
const void *key)
{
if (!p_data) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t result = ESP_OK;
// The `esp_ds_encrypt_params` operation does not use the Digital Signature peripheral,
// but just the AES and SHA peripherals, so acquiring locks just for these peripherals
// would be enough rather than acquiring a lock for the Digital Signature peripheral.
esp_crypto_sha_aes_lock_acquire();
periph_module_enable(PERIPH_AES_MODULE);
periph_module_enable(PERIPH_SHA_MODULE);
ets_ds_data_t *ds_data = (ets_ds_data_t *) data;
const ets_ds_p_data_t *ds_plain_data = (const ets_ds_p_data_t *) p_data;
ets_ds_result_t ets_result = ets_ds_encrypt_params(ds_data, iv, ds_plain_data, key, ETS_DS_KEY_HMAC);
if (ets_result == ETS_DS_INVALID_PARAM) {
result = ESP_ERR_INVALID_ARG;
}
periph_module_disable(PERIPH_SHA_MODULE);
periph_module_disable(PERIPH_AES_MODULE);
esp_crypto_sha_aes_lock_release();
return result;
}
#endif