esp-idf/components/freertos/esp_additions/freertos_tasks_c_additions.h
2024-06-18 14:25:37 +08:00

1241 lines
49 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "esp_assert.h"
#include "esp_heap_caps.h"
#include "esp_compiler.h"
#include "freertos/idf_additions.h"
#if CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT
#include "esp_private/freertos_debug.h"
#endif /* CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT */
#include "esp_private/freertos_idf_additions_priv.h"
/**
* This file will be included in `tasks.c` file, thus, it is treated as a source
* file instead of a header file, and must NOT be included by any (other) file.
* This file is used to add additional functions to `tasks.c`. See the
* `esp_additions/include` directory of the headers that expose these `tasks.c`
* additional API.
*/
/* ------------------------------------------------- Static Asserts ------------------------------------------------- */
/*
* Both StaticTask_t and TCB_t structures are provided by FreeRTOS sources.
* This is just an additional check of the consistency of these structures.
*/
_Static_assert( offsetof( StaticTask_t, pxDummy6 ) == offsetof( TCB_t, pxStack ) );
_Static_assert( offsetof( StaticTask_t, pxDummy8 ) == offsetof( TCB_t, pxEndOfStack ) );
#if !CONFIG_IDF_TARGET_LINUX // Disabled for linux builds due to differences in types
_Static_assert( tskNO_AFFINITY == ( BaseType_t ) CONFIG_FREERTOS_NO_AFFINITY, "CONFIG_FREERTOS_NO_AFFINITY must be the same as tskNO_AFFINITY" );
#endif
/* ------------------------------------------------- Kernel Control ------------------------------------------------- */
#if ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) )
/*
* Wrapper function to take "xKerneLock"
*/
void prvTakeKernelLock( void )
{
/* We call the tasks.c critical section macro to take xKernelLock */
taskENTER_CRITICAL( &xKernelLock );
}
#endif /* ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) ) */
/*----------------------------------------------------------*/
#if ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) )
/*
* Wrapper function to release "xKerneLock"
*/
void prvReleaseKernelLock( void )
{
/* We call the tasks.c critical section macro to release xKernelLock */
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) ) */
/*----------------------------------------------------------*/
#if ( CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) )
/*
* Workaround for non-thread safe multi-core OS startup (see IDF-4524)
*/
void prvStartSchedulerOtherCores( void )
{
/* This function is always called with interrupts disabled*/
xSchedulerRunning = pdTRUE;
}
#endif /* ( CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) ) */
/*----------------------------------------------------------*/
#if ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) )
BaseType_t xTaskIncrementTickOtherCores( void )
{
/* Minor optimization. This function can never switch cores mid
* execution */
BaseType_t xCoreID = portGET_CORE_ID();
BaseType_t xSwitchRequired = pdFALSE;
/* This function should never be called by Core 0. */
configASSERT( xCoreID != 0 );
/* Called by the portable layer each time a tick interrupt occurs
* on a core other than core 0. */
traceTASK_INCREMENT_TICK( xTickCount );
if( uxSchedulerSuspended[ xCoreID ] == ( UBaseType_t ) 0U )
{
/* We need take the kernel lock here as we are about to access
* kernel data structures. */
taskENTER_CRITICAL_ISR( &xKernelLock );
/* Tasks of equal priority to the currently running task will share
* processing time (time slice) if preemption is on, and the application
* writer has not explicitly turned time slicing off. */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
/* Release the previously taken kernel lock as we have finished
* accessing the kernel data structures. */
taskEXIT_CRITICAL_ISR( &xKernelLock );
#if ( configUSE_PREEMPTION == 1 )
{
if( xYieldPending[ xCoreID ] != pdFALSE )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
#if ( configUSE_TICK_HOOK == 1 )
{
vApplicationTickHook();
}
#endif
return xSwitchRequired;
}
#endif /* ( !CONFIG_FREERTOS_SMP && ( configNUM_CORES > 1 ) ) */
/*----------------------------------------------------------*/
/* -------------------------------------------------- Task Creation ------------------------------------------------- */
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint32_t usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
const BaseType_t xCoreID )
{
BaseType_t xReturn;
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE || xCoreID == tskNO_AFFINITY );
#if CONFIG_FREERTOS_SMP
{
/* If using Amazon SMP FreeRTOS. This function is just a wrapper around
* xTaskCreate() or xTaskCreateAffinitySet(). */
#if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Convert xCoreID into an affinity mask */
UBaseType_t uxCoreAffinityMask;
/* Bit shifting << xCoreID is only valid if we have less than
* 32 cores. */
ESP_STATIC_ASSERT( configNUM_CORES < 32 );
if( xCoreID == tskNO_AFFINITY )
{
uxCoreAffinityMask = tskNO_AFFINITY;
}
else
{
uxCoreAffinityMask = ( 1 << xCoreID );
}
xReturn = xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
}
#else /* ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
xReturn = xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
}
#endif /* ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
}
#else /* CONFIG_FREERTOS_SMP */
{
TCB_t * pxNewTCB;
/* If the stack grows down then allocate the stack then the TCB so the
* stack does not grow into the TCB. Likewise if the stack grows up
* then allocate the TCB then the stack. */
#if ( portSTACK_GROWTH > 0 )
{
/* Allocate space for the TCB. Where the memory comes from depends on
* the implementation of the port malloc function and whether or not static
* allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Allocate space for the stack used by the task being created.
* The base of the stack memory stored in the TCB so the task can
* be deleted later if required. */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
if( pxNewTCB->pxStack == NULL )
{
/* Could not allocate the stack. Delete the allocated TCB. */
vPortFree( pxNewTCB );
pxNewTCB = NULL;
}
}
}
#else /* portSTACK_GROWTH */
{
StackType_t * pxStack;
/* Allocate space for the stack used by the task being created. */
pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
if( pxNewTCB != NULL )
{
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxStack;
}
else
{
/* The stack cannot be used as the TCB was not created. Free
* it again. */
vPortFreeStack( pxStack );
}
}
else
{
pxNewTCB = NULL;
}
}
#endif /* portSTACK_GROWTH */
if( pxNewTCB != NULL )
{
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created dynamically in case it is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL, xCoreID );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
}
#endif /* CONFIG_FREERTOS_SMP */
return xReturn;
}
#endif /* ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
/*----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
TaskHandle_t xTaskCreateStaticPinnedToCore( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
const BaseType_t xCoreID )
{
TaskHandle_t xReturn;
configASSERT( portVALID_STACK_MEM( puxStackBuffer ) );
configASSERT( portVALID_TCB_MEM( pxTaskBuffer ) );
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE || xCoreID == tskNO_AFFINITY );
#if CONFIG_FREERTOS_SMP
{
/* If using Amazon SMP FreeRTOS. This function is just a wrapper around
* xTaskCreateStatic() or xTaskCreateStaticAffinitySet(). */
#if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Convert xCoreID into an affinity mask */
UBaseType_t uxCoreAffinityMask;
/* Bit shifting << xCoreID is only valid if we have less than
* 32 cores. */
ESP_STATIC_ASSERT( configNUM_CORES < 32 );
if( xCoreID == tskNO_AFFINITY )
{
uxCoreAffinityMask = tskNO_AFFINITY;
}
else
{
uxCoreAffinityMask = ( 1 << xCoreID );
}
xReturn = xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
}
#else /* ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
xReturn = xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
}
#endif /* ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
}
#else /* CONFIG_FREERTOS_SMP */
{
TCB_t * pxNewTCB;
#if ( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
* variable of type StaticTask_t equals the size of the real task
* structure. */
volatile size_t xSize = sizeof( StaticTask_t );
configASSERT( xSize == sizeof( TCB_t ) );
( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
}
#endif /* configASSERT_DEFINED */
if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
{
/* The memory used for the task's TCB and stack are passed into this
* function - use them. */
pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL, xCoreID );
prvAddNewTaskToReadyList( pxNewTCB );
}
else
{
xReturn = NULL;
}
}
#endif /* CONFIG_FREERTOS_SMP */
return xReturn;
}
#endif /* ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*----------------------------------------------------------*/
#if ( configUSE_TIMERS == 1 )
/*
* In ESP-IDF, configUSE_TIMERS is always defined as 1 (i.e., not user configurable).
* However, tasks.c: vTaskStartScheduler() will always call xTimerCreateTimerTask()
* if ( configUSE_TIMERS == 1 ), thus causing the linker to link timers.c and
* wasting some memory (due to the timer task being created)/
*
* If we provide a weak version of xTimerCreateTimerTask(), this version will be
* compiled if the application does not call any other FreeRTOS timer functions.
* Thus we can save some text/RAM as timers.c will not be linked and the timer
* task never created.
*/
BaseType_t __attribute__( ( weak ) ) xTimerCreateTimerTask( void )
{
return pdPASS;
}
#endif /* configUSE_TIMERS */
/*----------------------------------------------------------*/
/* ------------------------------------------------- Task Utilities ------------------------------------------------- */
BaseType_t xTaskGetCoreID( TaskHandle_t xTask )
{
BaseType_t xReturn;
#if ( configNUM_CORES > 1 )
{
#if CONFIG_FREERTOS_SMP
UBaseType_t uxCoreAffinityMask;
/* Get the core affinity mask and convert it to an ID */
uxCoreAffinityMask = vTaskCoreAffinityGet( xTask );
/* If the task is not pinned to a particular core, treat it as tskNO_AFFINITY */
if( uxCoreAffinityMask & ( uxCoreAffinityMask - 1 ) ) /* If more than one bit set */
{
xReturn = tskNO_AFFINITY;
}
else
{
int iIndexPlusOne = __builtin_ffs( uxCoreAffinityMask );
assert( iIndexPlusOne >= 1 );
xReturn = iIndexPlusOne - 1;
}
#else /* CONFIG_FREERTOS_SMP */
TCB_t * pxTCB;
/* Todo: Remove xCoreID for single core builds (IDF-7894) */
pxTCB = prvGetTCBFromHandle( xTask );
xReturn = pxTCB->xCoreID;
#endif /* CONFIG_FREERTOS_SMP */
}
#else /* configNUM_CORES > 1 */
{
/* Single-core. Just return a core ID of 0 */
xReturn = 0;
}
#endif /* configNUM_CORES > 1 */
return xReturn;
}
/*----------------------------------------------------------*/
#if ( ( !CONFIG_FREERTOS_SMP ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
{
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
* started, then xIdleTaskHandle will be NULL. */
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
configASSERT( ( xIdleTaskHandle[ xCoreID ] != NULL ) );
return xIdleTaskHandle[ xCoreID ];
}
#endif /* ( ( !CONFIG_FREERTOS_SMP ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*----------------------------------------------------------*/
#if ( ( !CONFIG_FREERTOS_SMP ) && ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) )
TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
{
TaskHandle_t xReturn;
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
#if ( CONFIG_FREERTOS_SMP )
{
xReturn = xTaskGetCurrentTaskHandleCPU( ( UBaseType_t ) xCoreID );
}
#else /* CONFIG_FREERTOS_SMP */
{
/* A critical section is not required as this function does not
* guarantee that the TCB will still be valid when this function
* returns. */
xReturn = pxCurrentTCBs[ xCoreID ];
}
#endif /* CONFIG_FREERTOS_SMP */
return xReturn;
}
#endif /* ( ( !CONFIG_FREERTOS_SMP ) && ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) ) */
/*----------------------------------------------------------*/
#if ( !CONFIG_FREERTOS_SMP && ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounterForCore( BaseType_t xCoreID )
{
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter;
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
ulRunTimeCounter = xIdleTaskHandle[ xCoreID ]->ulRunTimeCounter;
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
return ulRunTimeCounter;
}
#endif /* ( !CONFIG_FREERTOS_SMP && ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*----------------------------------------------------------*/
#if ( !CONFIG_FREERTOS_SMP && ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercentForCore( BaseType_t xCoreID )
{
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalTime );
#else
ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
#endif
/* For percentage calculations. */
ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
/* Avoid divide by zero errors. */
if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
{
/* For SMP, we need to take the kernel lock here as we are about
* to access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
ulReturn = xIdleTaskHandle[ xCoreID ]->ulRunTimeCounter / ulTotalTime;
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
else
{
ulReturn = 0;
}
return ulReturn;
}
#endif /* ( !CONFIG_FREERTOS_SMP && ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/
uint8_t * pxTaskGetStackStart( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * uxReturn;
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = ( uint8_t * ) pxTCB->pxStack;
return uxReturn;
}
/*----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void prvTaskPriorityRaise( prvTaskSavedPriority_t * pxSavedPriority,
UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxPriorityUsedOnEntry;
configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
#if CONFIG_FREERTOS_SMP
taskENTER_CRITICAL();
#else
taskENTER_CRITICAL( &xKernelLock );
#endif
{
pxTCB = prvGetTCBFromHandle( NULL );
#if ( configUSE_MUTEXES == 1 )
{
pxSavedPriority->uxPriority = pxTCB->uxPriority;
pxSavedPriority->uxBasePriority = pxTCB->uxBasePriority;
/* If uxNewPriority < uxBasePriority, then there is nothing else to
* do, as uxBasePriority is always <= uxPriority. */
if( uxNewPriority > pxTCB->uxBasePriority )
{
pxTCB->uxBasePriority = uxNewPriority;
/* Remember the task's current priority before attempting to
* change it. If the task's current priority is changed, it must
* be done so before moving the task between task lists) in order
* for the taskRESET_READY_PRIORITY() macro to function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
if( uxNewPriority > pxTCB->uxPriority )
{
pxTCB->uxPriority = uxNewPriority;
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
prvAddTaskToReadyList( pxTCB );
}
}
}
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxSavedPriority->uxPriority = pxTCB->uxPriority;
if( uxNewPriority > pxTCB->uxPriority )
{
vTaskPrioritySet( NULL, uxNewPriority );
}
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
}
#if CONFIG_FREERTOS_SMP
taskEXIT_CRITICAL();
#else
taskEXIT_CRITICAL( &xKernelLock );
#endif
}
#endif /* INCLUDE_vTaskPrioritySet == 1 */
/*----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void prvTaskPriorityRestore( prvTaskSavedPriority_t * pxSavedPriority )
{
TCB_t * pxTCB;
UBaseType_t uxNewPriority;
UBaseType_t uxPriorityUsedOnEntry;
UBaseType_t uxBasePriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
#if CONFIG_FREERTOS_SMP
taskENTER_CRITICAL();
#else
taskENTER_CRITICAL( &xKernelLock );
#endif
{
pxTCB = prvGetTCBFromHandle( NULL );
#if ( configUSE_MUTEXES == 1 )
{
/* If the saved uxBasePriority == the task's uxBasePriority, it means
* that prvTaskPriorityRaise() never raised the task's uxBasePriority.
* In that case, there is nothing else to do. */
if( pxSavedPriority->uxBasePriority != pxTCB->uxBasePriority )
{
uxBasePriorityUsedOnEntry = pxTCB->uxBasePriority;
pxTCB->uxBasePriority = pxSavedPriority->uxBasePriority;
/* Remember the task's current priority before attempting to
* change it. If the task's current priority is changed, it must
* be done so before moving the task between task lists in order
* for the taskRESET_READY_PRIORITY() macro to function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
/* Check if the task inherited a priority after prvTaskPriorityRaise().
* If this is the case, there is nothing else to do. The priority
* will be restored when the task disinherits its priority. */
if( pxTCB->uxPriority == uxBasePriorityUsedOnEntry )
{
if( pxTCB->uxMutexesHeld == 0 )
{
/* The task may have inherited a priority before prvTaskPriorityRaise()
* then disinherited a priority after prvTaskPriorityRaise().
* Thus we need set the uxPriority to the saved base priority
* so that the task's priority gets restored to the priority
* before any inheritance or raising. */
pxTCB->uxPriority = pxSavedPriority->uxBasePriority;
}
else
{
/* The task may have inherited a priority before prvTaskPriorityRaise()
* was called. Thus, we need to restore uxPriority to the
* "saved uxPriority" so that the task still retains that
* inherited priority. */
pxTCB->uxPriority = pxSavedPriority->uxPriority;
}
uxNewPriority = pxTCB->uxPriority;
if( uxNewPriority < uxPriorityUsedOnEntry )
{
/* Setting the priority of the running task down means
* there may now be another task of higher priority that
* is ready to execute. */
xYieldRequired = pdTRUE;
}
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
prvAddTaskToReadyList( pxTCB );
}
if( xYieldRequired != pdFALSE )
{
#if CONFIG_FREERTOS_SMP
taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
#else
taskYIELD_IF_USING_PREEMPTION();
#endif
}
}
}
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
vTaskPrioritySet( NULL, pxSavedPriority->uxPriority );
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
}
#if CONFIG_FREERTOS_SMP
taskEXIT_CRITICAL();
#else
taskEXIT_CRITICAL( &xKernelLock );
#endif
}
#endif /* ( INCLUDE_vTaskPrioritySet == 1 ) */
/*----------------------------------------------------------*/
/* --------------------------------------------- TLSP Deletion Callbacks -------------------------------------------- */
#if CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet,
BaseType_t xIndex,
void * pvValue,
TlsDeleteCallbackFunction_t pvDelCallback )
{
/* If TLSP deletion callbacks are enabled, then configNUM_THREAD_LOCAL_STORAGE_POINTERS
* is doubled in size so that the latter half of the pvThreadLocalStoragePointers
* stores the deletion callbacks. */
if( xIndex < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) )
{
TCB_t * pxTCB;
#if ( configNUM_CORES > 1 )
{
/* For SMP, we need a critical section as another core could also
* update this task's TLSP at the same time. */
#if CONFIG_FREERTOS_SMP
{
taskENTER_CRITICAL();
}
#else /* CONFIG_FREERTOS_SMP */
{
taskENTER_CRITICAL( &xKernelLock );
}
#endif /* CONFIG_FREERTOS_SMP */
}
#endif /* configNUM_CORES > 1 */
pxTCB = prvGetTCBFromHandle( xTaskToSet );
/* Store the TLSP by indexing the first half of the array */
pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
/* Store the TLSP deletion callback by indexing the second half
* of the array. */
pxTCB->pvThreadLocalStoragePointers[ ( xIndex + ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ) ] = ( void * ) pvDelCallback;
#if ( configNUM_CORES > 1 )
{
#if CONFIG_FREERTOS_SMP
{
taskEXIT_CRITICAL();
}
#else /* CONFIG_FREERTOS_SMP */
{
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* CONFIG_FREERTOS_SMP */
}
#endif /* configNUM_CORES > 1 */
}
}
#endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
/*----------------------------------------------------------*/
/* ----------------------------------------------------- Newlib ----------------------------------------------------- */
#if ( configUSE_NEWLIB_REENTRANT == 1 )
/**
* @brief Get reentrancy structure of the current task
*
* - This function is required by newlib (when __DYNAMIC_REENT__ is enabled)
* - It will return a pointer to the current task's reent struct
* - If FreeRTOS is not running, it will return the global reent struct
*
* @return Pointer to a the (current taks's)/(global) reent struct
*/
struct _reent * __getreent( void )
{
/* No lock needed because if this changes, we won't be running anymore. */
TCB_t * pxCurTask = ( TCB_t * ) xTaskGetCurrentTaskHandle();
struct _reent * ret;
if( pxCurTask == NULL )
{
/* No task running. Return global struct. */
ret = _GLOBAL_REENT;
}
else
{
/* We have a currently executing task. Return its reentrant struct. */
ret = &pxCurTask->xTLSBlock;
}
return ret;
}
#endif /* configUSE_NEWLIB_REENTRANT == 1 */
/* -------------------------------------------------- Task Snapshot ------------------------------------------------- */
/**
* @brief List of all task lists in FreeRTOS
*
* @note There are currently differing number of task list between SMP FreeRTOS and ESP-IDF FreeRTOS
*/
static List_t * non_ready_task_lists[] =
{
#ifdef CONFIG_FREERTOS_SMP
&xPendingReadyList,
#else /* CONFIG_FREERTOS_SMP */
&xPendingReadyList[ 0 ],
#ifndef CONFIG_FREERTOS_UNICORE
&xPendingReadyList[ 1 ],
#endif /* CONFIG_FREERTOS_UNICORE */
#endif /* CONFIG_FREERTOS_SMP */
&xDelayedTaskList1,
&xDelayedTaskList2,
#if ( INCLUDE_vTaskDelete == 1 )
&xTasksWaitingTermination,
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
&xSuspendedTaskList,
#endif
};
/*----------------------------------------------------------*/
/**
* @brief Get the task list from state lists by index
*
* - This function returns the task list based on the specified index.
* - The index is relative to the below order of the task state lists
* - Ready lists (highest to lowers priority)
* - Pending ready list(s)
* - Delayed list 1
* - Delayed list 2
* - Waiting termination list
* - Suspended list
*
* @param uxListIndex The index of the desired task list.
* @return A pointer to the task list at the specified index.
* Returns NULL if the index is out of bounds or list is corrupted.
*/
static List_t * pxGetTaskListByIndex( UBaseType_t uxListIndex )
{
List_t * pxTaskList;
const size_t xNonReadyTaskListsCnt = ( sizeof( non_ready_task_lists ) / sizeof( List_t * ) );
if( uxListIndex < configMAX_PRIORITIES )
{
pxTaskList = &pxReadyTasksLists[ configMAX_PRIORITIES - 1 - uxListIndex ];
}
else if( uxListIndex < configMAX_PRIORITIES + xNonReadyTaskListsCnt )
{
pxTaskList = non_ready_task_lists[ uxListIndex - configMAX_PRIORITIES ];
}
else
{
pxTaskList = NULL;
}
/* sanity check */
if( pxTaskList )
{
if( !portVALID_LIST_MEM( pxTaskList ) )
{
pxTaskList = NULL;
}
}
return pxTaskList;
}
/*----------------------------------------------------------*/
/**
* @brief Get the total count of task lists.
*
* The count includes both the ready task lists (based on priority) and non-ready task lists.
*
* @return The total count of task lists.
*
*/
static inline UBaseType_t pxGetTaskListCount( void )
{
return configMAX_PRIORITIES + ( sizeof( non_ready_task_lists ) / sizeof( List_t * ) );
}
/*----------------------------------------------------------*/
/**
* @brief Get the next task using the task iterator.
*
* This function retrieves the next task in the traversal sequence.
*
* @param xIterator Pointer to the task iterator structure.
*
* @return Index of the current task list. Returns -1 if all tasks have been traversed.
*
* @note The task iterator keeps track of the current state during task traversal,
* including the index of the current task list and the pointer of the next task list item.
* When all tasks have been traversed, this function returns -1.
* If a broken or corrupted task is encountered, the task handle is set to NULL.
*/
int xTaskGetNext( TaskIterator_t * xIterator )
{
if( !xIterator )
{
return -1;
}
ListItem_t * pxNextListItem = xIterator->pxNextListItem;
UBaseType_t uxCurListIdx = xIterator->uxCurrentListIndex;
UBaseType_t uxMaxListIdx = pxGetTaskListCount();
for( ; uxCurListIdx < uxMaxListIdx; ++uxCurListIdx )
{
List_t * pxCurrentTaskList = pxGetTaskListByIndex( uxCurListIdx );
if( !pxCurrentTaskList || ( listCURRENT_LIST_LENGTH( pxCurrentTaskList ) == 0 ) )
{
continue;
}
const ListItem_t * pxCurrListItem = listGET_END_MARKER( pxCurrentTaskList );
if( !pxNextListItem )
{
/* We are here if the traversal starts from the beginning or when we finish traversing
* for one of the state lists
*/
pxNextListItem = listGET_NEXT( pxCurrListItem );
}
if( !portVALID_LIST_MEM( pxNextListItem ) )
{
/* Nothing to do with the corrupted list item. We will skip to the next task state list.
* pxNextListItem should be NULL at the beginning of each task list.
*/
pxNextListItem = NULL;
continue;
}
TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxNextListItem );
if( !portVALID_TCB_MEM( pxTCB ) )
{
pxTCB = NULL;
}
xIterator->pxTaskHandle = pxTCB;
xIterator->uxCurrentListIndex = uxCurListIdx;
if( pxCurrListItem->pxPrevious == pxNextListItem )
{
/* If this is the last item of the current state list */
xIterator->uxCurrentListIndex++;
xIterator->pxNextListItem = NULL;
}
else
{
xIterator->pxNextListItem = listGET_NEXT( pxNextListItem );
}
return uxCurListIdx;
}
return -1; /* end of the task list */
}
/*----------------------------------------------------------*/
BaseType_t vTaskGetSnapshot( TaskHandle_t pxTask,
TaskSnapshot_t * pxTaskSnapshot )
{
ESP_STATIC_ANALYZER_CHECK(!pxTask, pdFALSE);
if( ( portVALID_TCB_MEM( pxTask ) == false ) || ( pxTaskSnapshot == NULL ) )
{
return pdFALSE;
}
TCB_t * pxTCB = ( TCB_t * ) pxTask;
pxTaskSnapshot->pxTCB = pxTCB;
pxTaskSnapshot->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
pxTaskSnapshot->pxEndOfStack = ( StackType_t * ) pxTCB->pxEndOfStack;
return pdTRUE;
}
/*----------------------------------------------------------*/
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray,
const UBaseType_t uxArrayLength,
UBaseType_t * const pxTCBSize )
{
UBaseType_t uxArrayNumFilled = 0;
/* Traverse all of the tasks lists */
TaskIterator_t xTaskIter = { 0 }; /* Point to the first task list */
while( xTaskGetNext( &xTaskIter ) != -1 && uxArrayNumFilled < uxArrayLength )
{
vTaskGetSnapshot( xTaskIter.pxTaskHandle, &pxTaskSnapshotArray[ uxArrayNumFilled ] );
uxArrayNumFilled++;
}
if( pxTCBSize != NULL )
{
*pxTCBSize = sizeof( TCB_t );
}
return uxArrayNumFilled;
}
/*----------------------------------------------------------*/
/* ----------------------------------------------------- Misc ----------------------------------------------------- */
void * pvTaskGetCurrentTCBForCore( BaseType_t xCoreID )
{
void * pvRet;
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
#if CONFIG_FREERTOS_SMP
/* SMP FreeRTOS defines pxCurrentTCB as a macro function call */
pvRet = ( void * ) pxCurrentTCB;
#else /* CONFIG_FREERTOS_SMP */
pvRet = ( void * ) pxCurrentTCBs[ xCoreID ];
#endif /* CONFIG_FREERTOS_SMP */
return pvRet;
}
/* ----------------------------------------------------- OpenOCD ---------------------------------------------------- */
#if CONFIG_FREERTOS_DEBUG_OCDAWARE
/**
* Debug param indexes. DO NOT change the order. OpenOCD uses the same indexes
* Entries in FreeRTOS_openocd_params must match the order of these indexes
*/
enum
{
ESP_FREERTOS_DEBUG_TABLE_SIZE = 0,
ESP_FREERTOS_DEBUG_TABLE_VERSION,
ESP_FREERTOS_DEBUG_KERNEL_VER_MAJOR,
ESP_FREERTOS_DEBUG_KERNEL_VER_MINOR,
ESP_FREERTOS_DEBUG_KERNEL_VER_BUILD,
ESP_FREERTOS_DEBUG_UX_TOP_USED_PIORITY,
ESP_FREERTOS_DEBUG_PX_TOP_OF_STACK,
ESP_FREERTOS_DEBUG_PC_TASK_NAME,
/* New entries must be inserted here */
ESP_FREERTOS_DEBUG_TABLE_END,
};
const DRAM_ATTR uint8_t FreeRTOS_openocd_params[ ESP_FREERTOS_DEBUG_TABLE_END ] =
{
ESP_FREERTOS_DEBUG_TABLE_END, /* table size */
1, /* table version */
tskKERNEL_VERSION_MAJOR,
tskKERNEL_VERSION_MINOR,
tskKERNEL_VERSION_BUILD,
configMAX_PRIORITIES - 1, /* uxTopUsedPriority */
offsetof( TCB_t, pxTopOfStack ), /* thread_stack_offset; */
offsetof( TCB_t, pcTaskName ), /* thread_name_offset; */
};
#endif /* CONFIG_FREERTOS_DEBUG_OCDAWARE */
/*----------------------------------------------------------*/
/* ----------------------------------------------------- PSRAM ---------------------------------------------------- */
#if CONFIG_SPIRAM
#if CONFIG_FREERTOS_SMP
BaseType_t prvTaskCreateDynamicAffinitySetWithCaps( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
UBaseType_t uxCoreAffinityMask,
UBaseType_t uxStackMemoryCaps,
TaskHandle_t * const pxCreatedTask )
#else /* CONFIG_FREERTOS_SMP */
BaseType_t prvTaskCreateDynamicPinnedToCoreWithCaps( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
const BaseType_t xCoreID,
UBaseType_t uxStackMemoryCaps,
TaskHandle_t * const pxCreatedTask )
#endif /* CONFIG_FREERTOS_SMP */
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
StackType_t * pxStack;
configASSERT( uxStackMemoryCaps & ( MALLOC_CAP_8BIT ) );
configASSERT( ( uxStackMemoryCaps & MALLOC_CAP_SPIRAM ) ||
( uxStackMemoryCaps & MALLOC_CAP_INTERNAL ) );
#if ( !CONFIG_FREERTOS_SMP )
{
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE || xCoreID == tskNO_AFFINITY );
}
#endif /* !CONFIG_FREERTOS_SMP */
/* Allocate space for the stack used by the task being created. */
pxStack = heap_caps_malloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), uxStackMemoryCaps );
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxStack;
}
else
{
/* The stack cannot be used as the TCB has not been created. Free it. */
heap_caps_free( pxStack );
}
}
else
{
pxNewTCB = NULL;
}
if( pxNewTCB != NULL )
{
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created dynamically in case it is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
#if CONFIG_FREERTOS_SMP
{
prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
#if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
}
#endif /* ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
}
#else /* CONFIG_FREERTOS_SMP */
{
prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL, xCoreID );
}
#endif /* CONFIG_FREERTOS_SMP */
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
return xReturn;
}
#endif /* CONFIG_SPIRAM */
/*----------------------------------------------------------*/