esp-idf/components/freertos/FreeRTOS-Kernel-SMP/portable/xtensa/port.c
Darian Leung 37c270b337 freertos: Update Xtensa port files to support FreeRTOS SMP
This commit updates the copied Xtensa port to support the new porting interfaces
of the FreeRTOS SMP kernel. These modifications are mainly contained in

- FreeRTOSConfig.h
- FreeRTOSConfig_smp.h
- portmacro.h
- port.c

Some porting interfaces have changed in FreeRTOS SMP. In order to allow building
with IDF, compatibility interfaces have been added.
2022-03-08 14:59:18 +08:00

660 lines
23 KiB
C

/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <string.h>
#include "FreeRTOS.h"
#include "task.h" //For vApplicationStackOverflowHook
#include "portmacro.h"
#include "spinlock.h"
#include "xt_instr_macros.h"
#include "xtensa/xtensa_context.h"
#include "xtensa/corebits.h"
#include "xtensa/config/core.h"
#include "xtensa/config/core-isa.h"
#include "xtensa/xtruntime.h"
#include "esp_heap_caps.h"
#include "esp_system.h"
#include "esp_task.h"
#include "esp_log.h"
#include "esp_cpu.h"
#include "esp_rom_sys.h"
#include "esp_int_wdt.h"
#include "esp_task_wdt.h"
#include "esp_heap_caps_init.h"
#include "esp_private/startup_internal.h" /* Required by g_spiram_ok. [refactor-todo] for g_spiram_ok */
#include "esp32/spiram.h" /* Required by esp_spiram_reserve_dma_pool() */
#ifdef CONFIG_APPTRACE_ENABLE
#include "esp_app_trace.h"
#endif
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
#include "esp_gdbstub.h" /* Required by esp_gdbstub_init() */
#endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
/*
OS state variables
*/
volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0};
unsigned int port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit
//FreeRTOS SMP Locks
portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED;
portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED;
/* ------------------------------------------------ IDF Compatibility --------------------------------------------------
* - These need to be defined for IDF to compile
* ------------------------------------------------------------------------------------------------------------------ */
// --------------------- Interrupts ------------------------
BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
{
return (port_interruptNesting[xPortGetCoreID()] != 0);
}
// ------------------ Critical Sections --------------------
/*
Variables used by IDF critical sections only (SMP tracks critical nesting inside TCB now)
[refactor-todo] Figure out how IDF critical sections will be merged with SMP FreeRTOS critical sections
*/
BaseType_t port_uxCriticalNestingIDF[portNUM_PROCESSORS] = {0};
BaseType_t port_uxCriticalOldInterruptStateIDF[portNUM_PROCESSORS] = {0};
BaseType_t xPortEnterCriticalTimeout(portMUX_TYPE *lock, BaseType_t timeout)
{
/* Interrupts may already be disabled (if this function is called in nested
* manner). However, there's no atomic operation that will allow us to check,
* thus we have to disable interrupts again anyways.
*
* However, if this is call is NOT nested (i.e., the first call to enter a
* critical section), we will save the previous interrupt level so that the
* saved level can be restored on the last call to exit the critical.
*/
BaseType_t xOldInterruptLevel = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL);
if (!spinlock_acquire(lock, timeout)) {
//Timed out attempting to get spinlock. Restore previous interrupt level and return
XTOS_RESTORE_JUST_INTLEVEL((int) xOldInterruptLevel);
return pdFAIL;
}
//Spinlock acquired. Increment the IDF critical nesting count.
BaseType_t coreID = xPortGetCoreID();
BaseType_t newNesting = port_uxCriticalNestingIDF[coreID] + 1;
port_uxCriticalNestingIDF[coreID] = newNesting;
//If this is the first entry to a critical section. Save the old interrupt level.
if ( newNesting == 1 ) {
port_uxCriticalOldInterruptStateIDF[coreID] = xOldInterruptLevel;
}
return pdPASS;
}
void vPortExitCriticalIDF(portMUX_TYPE *lock)
{
/* This function may be called in a nested manner. Therefore, we only need
* to reenable interrupts if this is the last call to exit the critical. We
* can use the nesting count to determine whether this is the last exit call.
*/
spinlock_release(lock);
BaseType_t coreID = xPortGetCoreID();
BaseType_t nesting = port_uxCriticalNestingIDF[coreID];
if (nesting > 0) {
nesting--;
port_uxCriticalNestingIDF[coreID] = nesting;
//This is the last exit call, restore the saved interrupt level
if ( nesting == 0 ) {
XTOS_RESTORE_JUST_INTLEVEL((int) port_uxCriticalOldInterruptStateIDF[coreID]);
}
}
}
/*
In case any IDF libs called the port critical functions directly instead of through the macros.
Just inline call the IDF versions
*/
void vPortEnterCritical(portMUX_TYPE *lock)
{
vPortEnterCriticalIDF(lock);
}
void vPortExitCritical(portMUX_TYPE *lock)
{
vPortExitCriticalIDF(lock);
}
// ----------------------- System --------------------------
#define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
void vPortSetStackWatchpoint( void *pxStackStart )
{
//Set watchpoint 1 to watch the last 32 bytes of the stack.
//Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because
//the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32
//bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most
//28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes.
//This way, we make sure we trigger before/when the stack canary is corrupted, not after.
int addr = (int)pxStackStart;
addr = (addr + 31) & (~31);
esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE);
}
// ---------------------- Tick Timer -----------------------
extern void _frxt_tick_timer_init(void);
extern void _xt_tick_divisor_init(void);
/**
* @brief Initialize CCONT timer to generate the tick interrupt
*
*/
void vPortSetupTimer(void)
{
/* Init the tick divisor value */
_xt_tick_divisor_init();
_frxt_tick_timer_init();
}
// --------------------- App Start-up ----------------------
static const char *TAG = "cpu_start";
extern void app_main(void);
static void main_task(void* args)
{
#if !CONFIG_FREERTOS_UNICORE
// Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
while (port_xSchedulerRunning[1] == 0) {
;
}
#endif
// [refactor-todo] check if there is a way to move the following block to esp_system startup
heap_caps_enable_nonos_stack_heaps();
// Now we have startup stack RAM available for heap, enable any DMA pool memory
#if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
if (g_spiram_ok) {
esp_err_t r = esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
if (r != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool (error 0x%x)", r);
abort();
}
}
#endif
//Initialize task wdt if configured to do so
#ifdef CONFIG_ESP_TASK_WDT_PANIC
ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, true));
#elif CONFIG_ESP_TASK_WDT
ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, false));
#endif
//Add IDLE 0 to task wdt
#ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
if(idle_0 != NULL){
ESP_ERROR_CHECK(esp_task_wdt_add(idle_0));
}
#endif
//Add IDLE 1 to task wdt
#ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
if(idle_1 != NULL){
ESP_ERROR_CHECK(esp_task_wdt_add(idle_1));
}
#endif
app_main();
vTaskDelete(NULL);
}
void esp_startup_start_app_common(void)
{
#if CONFIG_ESP_INT_WDT
esp_int_wdt_init();
//Initialize the interrupt watch dog for CPU0.
esp_int_wdt_cpu_init();
#endif
esp_crosscore_int_init();
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
esp_gdbstub_init();
#endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
TaskHandle_t main_task_hdl;
portDISABLE_INTERRUPTS();
portBASE_TYPE res = xTaskCreatePinnedToCore(main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, &main_task_hdl, ESP_TASK_MAIN_CORE);
#if ( configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
//We only need to set affinity when using dual core with affinities supported
vTaskCoreAffinitySet(main_task_hdl, 1 << 1);
#endif
portENABLE_INTERRUPTS();
assert(res == pdTRUE);
(void)res;
}
void esp_startup_start_app_other_cores(void)
{
// For now, we only support up to two core: 0 and 1.
if (xPortGetCoreID() >= 2) {
abort();
}
// Wait for FreeRTOS initialization to finish on PRO CPU
while (port_xSchedulerRunning[0] == 0) {
;
}
#if CONFIG_APPTRACE_ENABLE
// [refactor-todo] move to esp_system initialization
esp_err_t err = esp_apptrace_init();
assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
#endif
#if CONFIG_ESP_INT_WDT
//Initialize the interrupt watch dog for CPU1.
esp_int_wdt_cpu_init();
#endif
esp_crosscore_int_init();
ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
xPortStartScheduler();
abort(); /* Only get to here if FreeRTOS somehow very broken */
}
void esp_startup_start_app(void)
{
#if !CONFIG_ESP_INT_WDT
#if CONFIG_ESP32_ECO3_CACHE_LOCK_FIX
assert(!soc_has_cache_lock_bug() && "ESP32 Rev 3 + Dual Core + PSRAM requires INT WDT enabled in project config!");
#endif
#endif
esp_startup_start_app_common();
ESP_EARLY_LOGI(TAG, "Starting scheduler on PRO CPU.");
vTaskStartScheduler();
}
/* ---------------------------------------------- Port Implementations -------------------------------------------------
* Implementations of Porting Interface functions
* ------------------------------------------------------------------------------------------------------------------ */
// --------------------- Interrupts ------------------------
BaseType_t xPortCheckIfInISR(void)
{
//Disable interrupts so that reading port_interruptNesting is atomic
BaseType_t ret;
unsigned int prev_int_level = portDISABLE_INTERRUPTS();
ret = (port_interruptNesting[xPortGetCoreID()] != 0) ? pdTRUE : pdFALSE;
portRESTORE_INTERRUPTS(prev_int_level);
return ret;
}
// ------------------ Critical Sections --------------------
void vPortTakeLock( portMUX_TYPE *lock )
{
spinlock_acquire( lock, portMUX_NO_TIMEOUT);
}
void vPortReleaseLock( portMUX_TYPE *lock )
{
spinlock_release( lock );
}
// ---------------------- Yielding -------------------------
// ----------------------- System --------------------------
/* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
* - Provides implementation for functions required by FreeRTOS
* - Declared in portable.h
* ------------------------------------------------------------------------------------------------------------------ */
// ----------------- Scheduler Start/End -------------------
extern void _xt_coproc_init(void);
BaseType_t xPortStartScheduler( void )
{
portDISABLE_INTERRUPTS();
// Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored
#if XCHAL_CP_NUM > 0
/* Initialize co-processor management for tasks. Leave CPENABLE alone. */
_xt_coproc_init();
#endif
/* Setup the hardware to generate the tick. */
vPortSetupTimer();
port_xSchedulerRunning[xPortGetCoreID()] = 1;
// Cannot be directly called from C; never returns
__asm__ volatile ("call0 _frxt_dispatch\n");
/* Should not get here. */
return pdTRUE;
}
void vPortEndScheduler( void )
{
;
}
// ----------------------- Memory --------------------------
#define FREERTOS_SMP_MALLOC_CAPS (MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT)
void *pvPortMalloc( size_t xSize )
{
return heap_caps_malloc(xSize, FREERTOS_SMP_MALLOC_CAPS);
}
void vPortFree( void * pv )
{
heap_caps_free(pv);
}
void vPortInitialiseBlocks( void )
{
; //Does nothing, heap is initialized separately in ESP-IDF
}
size_t xPortGetFreeHeapSize( void )
{
return esp_get_free_heap_size();
}
#if( configSTACK_ALLOCATION_FROM_SEPARATE_HEAP == 1 )
void *pvPortMallocStack( size_t xSize )
{
return NULL;
}
void vPortFreeStack( void *pv )
{
}
#endif
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize )
{
StaticTask_t *pxTCBBufferTemp;
StackType_t *pxStackBufferTemp;
//Allocate TCB and stack buffer in internal memory
pxTCBBufferTemp = pvPortMalloc(sizeof(StaticTask_t));
pxStackBufferTemp = pvPortMalloc(CONFIG_FREERTOS_IDLE_TASK_STACKSIZE);
assert(pxTCBBufferTemp != NULL);
assert(pxStackBufferTemp != NULL);
//Write back pointers
*ppxIdleTaskTCBBuffer = pxTCBBufferTemp;
*ppxIdleTaskStackBuffer = pxStackBufferTemp;
*pulIdleTaskStackSize = CONFIG_FREERTOS_IDLE_TASK_STACKSIZE;
}
void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer,
StackType_t **ppxTimerTaskStackBuffer,
uint32_t *pulTimerTaskStackSize )
{
StaticTask_t *pxTCBBufferTemp;
StackType_t *pxStackBufferTemp;
//Allocate TCB and stack buffer in internal memory
pxTCBBufferTemp = pvPortMalloc(sizeof(StaticTask_t));
pxStackBufferTemp = pvPortMalloc(configTIMER_TASK_STACK_DEPTH);
assert(pxTCBBufferTemp != NULL);
assert(pxStackBufferTemp != NULL);
//Write back pointers
*ppxTimerTaskTCBBuffer = pxTCBBufferTemp;
*ppxTimerTaskStackBuffer = pxStackBufferTemp;
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
#endif //( configSUPPORT_STATIC_ALLOCATION == 1 )
// ------------------------ Stack --------------------------
// User exception dispatcher when exiting
void _xt_user_exit(void);
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
// Wrapper to allow task functions to return (increases stack overhead by 16 bytes)
static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
{
pxCode(pvParameters);
//FreeRTOS tasks should not return. Log the task name and abort.
char *pcTaskName = pcTaskGetName(NULL);
ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName);
abort();
}
#endif
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
StackType_t * pxEndOfStack,
TaskFunction_t pxCode,
void * pvParameters,
BaseType_t xRunPrivileged )
#else
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters,
BaseType_t xRunPrivileged )
#endif
{
StackType_t *sp, *tp;
XtExcFrame *frame;
#if XCHAL_CP_NUM > 0
uint32_t *p;
#endif
uint32_t *threadptr;
void *task_thread_local_start;
extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align;
// TODO: check that TLS area fits the stack
uint32_t thread_local_sz = (uint8_t *)&_thread_local_end - (uint8_t *)&_thread_local_start;
thread_local_sz = ALIGNUP(0x10, thread_local_sz);
/* Initialize task's stack so that we have the following structure at the top:
----LOW ADDRESSES ----------------------------------------HIGH ADDRESSES----------
task stack | interrupt stack frame | thread local vars | co-processor save area |
----------------------------------------------------------------------------------
| |
SP pxTopOfStack
All parts are aligned to 16 byte boundary. */
sp = (StackType_t *) (((UBaseType_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz - XT_STK_FRMSZ) & ~0xf);
/* Clear the entire frame (do not use memset() because we don't depend on C library) */
for (tp = sp; tp <= pxTopOfStack; ++tp) {
*tp = 0;
}
frame = (XtExcFrame *) sp;
/* Explicitly initialize certain saved registers */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->pc = (UBaseType_t) vPortTaskWrapper; /* task wrapper */
#else
frame->pc = (UBaseType_t) pxCode; /* task entrypoint */
#endif
frame->a0 = 0; /* to terminate GDB backtrace */
frame->a1 = (UBaseType_t) sp + XT_STK_FRMSZ; /* physical top of stack frame */
frame->exit = (UBaseType_t) _xt_user_exit; /* user exception exit dispatcher */
/* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */
/* Also set entry point argument parameter. */
#ifdef __XTENSA_CALL0_ABI__
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->a2 = (UBaseType_t) pxCode;
frame->a3 = (UBaseType_t) pvParameters;
#else
frame->a2 = (UBaseType_t) pvParameters;
#endif
frame->ps = PS_UM | PS_EXCM;
#else /* __XTENSA_CALL0_ABI__ */
/* + for windowed ABI also set WOE and CALLINC (pretend task was 'call4'd). */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->a6 = (UBaseType_t) pxCode;
frame->a7 = (UBaseType_t) pvParameters;
#else
frame->a6 = (UBaseType_t) pvParameters;
#endif
frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1);
#endif /* __XTENSA_CALL0_ABI__ */
#ifdef XT_USE_SWPRI
/* Set the initial virtual priority mask value to all 1's. */
frame->vpri = 0xFFFFFFFF;
#endif
/* Init threadptr register and set up TLS run-time area.
* The diagram in port/riscv/port.c illustrates the calculations below.
*/
task_thread_local_start = (void *)(((uint32_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz) & ~0xf);
memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz);
threadptr = (uint32_t *)(sp + XT_STK_EXTRA);
/* Calculate THREADPTR value.
* The generated code will add THREADPTR value to a constant value determined at link time,
* to get the address of the TLS variable.
* The constant value is calculated by the linker as follows
* (search for 'tpoff' in elf32-xtensa.c in BFD):
* offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)
* where TCB_SIZE is hardcoded to 8.
* Note this is slightly different compared to the RISC-V port, where offset = address - tls_section_vma.
*/
const uint32_t tls_section_alignment = (uint32_t) &_flash_rodata_align; /* ALIGN value of .flash.rodata section */
const uint32_t tcb_size = 8; /* Unrelated to FreeRTOS, this is the constant from BFD */
const uint32_t base = (tcb_size + tls_section_alignment - 1) & (~(tls_section_alignment - 1));
*threadptr = (uint32_t)task_thread_local_start - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base;
#if XCHAL_CP_NUM > 0
/* Init the coprocessor save area (see xtensa_context.h) */
/* No access to TCB here, so derive indirectly. Stack growth is top to bottom.
* //p = (uint32_t *) xMPUSettings->coproc_area;
*/
p = (uint32_t *)(((uint32_t) pxTopOfStack - XT_CP_SIZE) & ~0xf);
configASSERT( ( uint32_t ) p >= frame->a1 );
p[0] = 0;
p[1] = 0;
p[2] = (((uint32_t) p) + 12 + XCHAL_TOTAL_SA_ALIGN - 1) & -XCHAL_TOTAL_SA_ALIGN;
#endif /* XCHAL_CP_NUM */
return sp;
}
// -------------------- Tick Handler -----------------------
extern void esp_vApplicationIdleHook(void);
extern void esp_vApplicationTickHook(void);
BaseType_t xPortSysTickHandler(void)
{
portbenchmarkIntLatency();
traceISR_ENTER(SYSTICK_INTR_ID);
BaseType_t ret;
if (portGET_CORE_ID() == 0) {
//Only Core 0 calls xTaskIncrementTick();
ret = xTaskIncrementTick();
} else {
//Manually call the IDF tick hooks
esp_vApplicationTickHook();
ret = pdFALSE;
}
if(ret != pdFALSE) {
portYIELD_FROM_ISR();
} else {
traceISR_EXIT();
}
return ret;
}
// ------------------- Hook Functions ----------------------
#include <stdlib.h>
#if ( configCHECK_FOR_STACK_OVERFLOW > 0 )
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName )
{
#define ERR_STR1 "***ERROR*** A stack overflow in task "
#define ERR_STR2 " has been detected."
const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 };
char *dest = buf;
for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) {
dest = strcat(dest, str[i]);
}
esp_system_abort(buf);
}
#endif
#if ( configUSE_TICK_HOOK > 0 )
void vApplicationTickHook( void )
{
esp_vApplicationTickHook();
}
#endif
#if ( configUSE_IDLE_HOOK == 1 )
void vApplicationIdleHook( void )
{
esp_vApplicationIdleHook();
}
#endif
#if ( configUSE_MINIMAL_IDLE_HOOK == 1 )
void vApplicationMinimalIdleHook( void )
{
esp_vApplicationIdleHook();
}
#endif
/* ---------------------------------------------- Misc Implementations -------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// -------------------- Co-Processor -----------------------
/*
* Used to set coprocessor area in stack. Current hack is to reuse MPU pointer for coprocessor area.
*/
#if portUSING_MPU_WRAPPERS
void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION *const xRegions, StackType_t *pxBottomOfStack, uint32_t usStackDepth )
{
#if XCHAL_CP_NUM > 0
xMPUSettings->coproc_area = ( StackType_t * ) ( ( uint32_t ) ( pxBottomOfStack + usStackDepth - 1 ));
xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) xMPUSettings->coproc_area ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( uint32_t ) xMPUSettings->coproc_area - XT_CP_SIZE ) & ~0xf );
/* NOTE: we cannot initialize the coprocessor save area here because FreeRTOS is going to
* clear the stack area after we return. This is done in pxPortInitialiseStack().
*/
#endif
}
void vPortReleaseTaskMPUSettings( xMPU_SETTINGS *xMPUSettings )
{
/* If task has live floating point registers somewhere, release them */
_xt_coproc_release( xMPUSettings->coproc_area );
}
#endif /* portUSING_MPU_WRAPPERS */