esp-idf/components/soc/esp32p4/include/soc/spi_mem_s_struct.h

2606 lines
112 KiB
C

/**
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Group: Status and state control register */
/** Type of mem_cmd register
* SPI0 FSM status register
*/
typedef union {
struct {
/** mem_mst_st : RO; bitpos: [3:0]; default: 0;
* The current status of SPI0 master FSM: spi0_mst_st. 0: idle state, 1:SPI0_GRANT ,
* 2: program/erase suspend state, 3: SPI0 read data state, 4: wait cache/EDMA sent
* data is stored in SPI0 TX FIFO, 5: SPI0 write data state.
*/
uint32_t mem_mst_st:4;
/** mem_slv_st : RO; bitpos: [7:4]; default: 0;
* The current status of SPI0 slave FSM: mspi_st. 0: idle state, 1: preparation state,
* 2: send command state, 3: send address state, 4: wait state, 5: read data state,
* 6:write data state, 7: done state, 8: read data end state.
*/
uint32_t mem_slv_st:4;
uint32_t reserved_8:10;
/** mem_usr : HRO; bitpos: [18]; default: 0;
* SPI0 USR_CMD start bit, only used when SPI_MEM_S_AXI_REQ_EN is cleared. An operation
* will be triggered when the bit is set. The bit will be cleared once the operation
* done.1: enable 0: disable.
*/
uint32_t mem_usr:1;
uint32_t reserved_19:13;
};
uint32_t val;
} spi_mem_s_cmd_reg_t;
/** Type of mem_axi_err_addr register
* SPI0 AXI request error address.
*/
typedef union {
struct {
/** mem_axi_err_addr : R/SS/WTC; bitpos: [26:0]; default: 0;
* This bits show the first AXI write/read invalid error or AXI write flash error
* address. It is cleared by when SPI_MEM_S_AXI_WADDR_ERR_INT_CLR,
* SPI_MEM_S_AXI_WR_FLASH_ERR_IN_CLR or SPI_MEM_S_AXI_RADDR_ERR_IN_CLR bit is set.
*/
uint32_t mem_axi_err_addr:27;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_axi_err_addr_reg_t;
/** Group: Flash Control and configuration registers */
/** Type of mem_ctrl register
* SPI0 control register.
*/
typedef union {
struct {
/** mem_wdummy_dqs_always_out : R/W; bitpos: [0]; default: 0;
* In the dummy phase of an MSPI write data transfer when accesses to flash, the level
* of SPI_DQS is output by the MSPI controller.
*/
uint32_t mem_wdummy_dqs_always_out:1;
/** mem_wdummy_always_out : R/W; bitpos: [1]; default: 0;
* In the dummy phase of an MSPI write data transfer when accesses to flash, the level
* of SPI_IO[7:0] is output by the MSPI controller.
*/
uint32_t mem_wdummy_always_out:1;
/** mem_fdummy_rin : R/W; bitpos: [2]; default: 1;
* In an MSPI read data transfer when accesses to flash, the level of SPI_IO[7:0] is
* output by the MSPI controller in the first half part of dummy phase. It is used to
* mask invalid SPI_DQS in the half part of dummy phase.
*/
uint32_t mem_fdummy_rin:1;
/** mem_fdummy_wout : R/W; bitpos: [3]; default: 1;
* In an MSPI write data transfer when accesses to flash, the level of SPI_IO[7:0] is
* output by the MSPI controller in the second half part of dummy phase. It is used to
* pre-drive flash.
*/
uint32_t mem_fdummy_wout:1;
/** mem_fdout_oct : R/W; bitpos: [4]; default: 0;
* Apply 8 signals during write-data phase 1:enable 0: disable
*/
uint32_t mem_fdout_oct:1;
/** mem_fdin_oct : R/W; bitpos: [5]; default: 0;
* Apply 8 signals during read-data phase 1:enable 0: disable
*/
uint32_t mem_fdin_oct:1;
/** mem_faddr_oct : R/W; bitpos: [6]; default: 0;
* Apply 8 signals during address phase 1:enable 0: disable
*/
uint32_t mem_faddr_oct:1;
uint32_t reserved_7:1;
/** mem_fcmd_quad : R/W; bitpos: [8]; default: 0;
* Apply 4 signals during command phase 1:enable 0: disable
*/
uint32_t mem_fcmd_quad:1;
/** mem_fcmd_oct : R/W; bitpos: [9]; default: 0;
* Apply 8 signals during command phase 1:enable 0: disable
*/
uint32_t mem_fcmd_oct:1;
uint32_t reserved_10:3;
/** mem_fastrd_mode : R/W; bitpos: [13]; default: 1;
* This bit enable the bits: SPI_MEM_S_FREAD_QIO, SPI_MEM_S_FREAD_DIO, SPI_MEM_S_FREAD_QOUT
* and SPI_MEM_S_FREAD_DOUT. 1: enable 0: disable.
*/
uint32_t mem_fastrd_mode:1;
/** mem_fread_dual : R/W; bitpos: [14]; default: 0;
* In the read operations, read-data phase apply 2 signals. 1: enable 0: disable.
*/
uint32_t mem_fread_dual:1;
uint32_t reserved_15:3;
/** mem_q_pol : R/W; bitpos: [18]; default: 1;
* The bit is used to set MISO line polarity, 1: high 0, low
*/
uint32_t mem_q_pol:1;
/** mem_d_pol : R/W; bitpos: [19]; default: 1;
* The bit is used to set MOSI line polarity, 1: high 0, low
*/
uint32_t mem_d_pol:1;
/** mem_fread_quad : R/W; bitpos: [20]; default: 0;
* In the read operations read-data phase apply 4 signals. 1: enable 0: disable.
*/
uint32_t mem_fread_quad:1;
/** mem_wp_reg : R/W; bitpos: [21]; default: 1;
* Write protect signal output when SPI is idle. 1: output high, 0: output low.
*/
uint32_t mem_wp_reg:1;
uint32_t reserved_22:1;
/** mem_fread_dio : R/W; bitpos: [23]; default: 0;
* In the read operations address phase and read-data phase apply 2 signals. 1: enable
* 0: disable.
*/
uint32_t mem_fread_dio:1;
/** mem_fread_qio : R/W; bitpos: [24]; default: 0;
* In the read operations address phase and read-data phase apply 4 signals. 1: enable
* 0: disable.
*/
uint32_t mem_fread_qio:1;
uint32_t reserved_25:5;
/** mem_dqs_ie_always_on : R/W; bitpos: [30]; default: 0;
* When accesses to flash, 1: the IE signals of pads connected to SPI_DQS are always
* 1. 0: Others.
*/
uint32_t mem_dqs_ie_always_on:1;
/** mem_data_ie_always_on : R/W; bitpos: [31]; default: 1;
* When accesses to flash, 1: the IE signals of pads connected to SPI_IO[7:0] are
* always 1. 0: Others.
*/
uint32_t mem_data_ie_always_on:1;
};
uint32_t val;
} spi_mem_s_ctrl_reg_t;
/** Type of mem_ctrl1 register
* SPI0 control1 register.
*/
typedef union {
struct {
/** mem_clk_mode : R/W; bitpos: [1:0]; default: 0;
* SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed
* one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3:
* SPI clock is alwasy on.
*/
uint32_t mem_clk_mode:2;
uint32_t reserved_2:19;
/** ar_size0_1_support_en : R/W; bitpos: [21]; default: 1;
* 1: MSPI supports ARSIZE 0~3. When ARSIZE =0~2, MSPI read address is 4*n and reply
* the real AXI read data back. 0: When ARSIZE 0~1, MSPI reply SLV_ERR.
*/
uint32_t ar_size0_1_support_en:1;
/** aw_size0_1_support_en : R/W; bitpos: [22]; default: 1;
* 1: MSPI supports AWSIZE 0~3. 0: When AWSIZE 0~1, MSPI reply SLV_ERR.
*/
uint32_t aw_size0_1_support_en:1;
/** axi_rdata_back_fast : R/W; bitpos: [23]; default: 1;
* 1: Reply AXI read data to AXI bus when one AXI read beat data is available. 0:
* Reply AXI read data to AXI bus when all the read data is available.
*/
uint32_t axi_rdata_back_fast:1;
/** mem_rresp_ecc_err_en : R/W; bitpos: [24]; default: 0;
* 1: RRESP is SLV_ERR when there is a ECC error in AXI read data. 0: RRESP is OKAY
* when there is a ECC error in AXI read data. The ECC error information is recorded
* in SPI_MEM_S_ECC_ERR_ADDR_REG.
*/
uint32_t mem_rresp_ecc_err_en:1;
/** mem_ar_splice_en : R/W; bitpos: [25]; default: 0;
* Set this bit to enable AXI Read Splice-transfer.
*/
uint32_t mem_ar_splice_en:1;
/** mem_aw_splice_en : R/W; bitpos: [26]; default: 0;
* Set this bit to enable AXI Write Splice-transfer.
*/
uint32_t mem_aw_splice_en:1;
/** mem_ram0_en : HRO; bitpos: [27]; default: 1;
* When SPI_MEM_S_DUAL_RAM_EN is 0 and SPI_MEM_S_RAM0_EN is 1, only EXT_RAM0 will be
* accessed. When SPI_MEM_S_DUAL_RAM_EN is 0 and SPI_MEM_S_RAM0_EN is 0, only EXT_RAM1
* will be accessed. When SPI_MEM_S_DUAL_RAM_EN is 1, EXT_RAM0 and EXT_RAM1 will be
* accessed at the same time.
*/
uint32_t mem_ram0_en:1;
/** mem_dual_ram_en : HRO; bitpos: [28]; default: 0;
* Set this bit to enable DUAL-RAM mode, EXT_RAM0 and EXT_RAM1 will be accessed at the
* same time.
*/
uint32_t mem_dual_ram_en:1;
/** mem_fast_write_en : R/W; bitpos: [29]; default: 1;
* Set this bit to write data faster, do not wait write data has been stored in
* tx_bus_fifo_l2. It will wait 4*T_clk_ctrl to insure the write data has been stored
* in tx_bus_fifo_l2.
*/
uint32_t mem_fast_write_en:1;
/** mem_rxfifo_rst : WT; bitpos: [30]; default: 0;
* The synchronous reset signal for SPI0 RX AFIFO and all the AES_MSPI SYNC FIFO to
* receive signals from AXI. Set this bit to reset these FIFO.
*/
uint32_t mem_rxfifo_rst:1;
/** mem_txfifo_rst : WT; bitpos: [31]; default: 0;
* The synchronous reset signal for SPI0 TX AFIFO and all the AES_MSPI SYNC FIFO to
* send signals to AXI. Set this bit to reset these FIFO.
*/
uint32_t mem_txfifo_rst:1;
};
uint32_t val;
} spi_mem_s_ctrl1_reg_t;
/** Type of mem_ctrl2 register
* SPI0 control2 register.
*/
typedef union {
struct {
/** mem_cs_setup_time : R/W; bitpos: [4:0]; default: 1;
* (cycles-1) of prepare phase by SPI Bus clock, this bits are combined with
* SPI_MEM_S_CS_SETUP bit.
*/
uint32_t mem_cs_setup_time:5;
/** mem_cs_hold_time : R/W; bitpos: [9:5]; default: 1;
* SPI CS signal is delayed to inactive by SPI bus clock, this bits are combined with
* SPI_MEM_S_CS_HOLD bit.
*/
uint32_t mem_cs_hold_time:5;
/** mem_ecc_cs_hold_time : R/W; bitpos: [12:10]; default: 3;
* SPI_MEM_S_CS_HOLD_TIME + SPI_MEM_S_ECC_CS_HOLD_TIME is the SPI0 CS hold cycle in ECC
* mode when accessed flash.
*/
uint32_t mem_ecc_cs_hold_time:3;
/** mem_ecc_skip_page_corner : R/W; bitpos: [13]; default: 1;
* 1: SPI0 and SPI1 skip page corner when accesses flash. 0: Not skip page corner when
* accesses flash.
*/
uint32_t mem_ecc_skip_page_corner:1;
/** mem_ecc_16to18_byte_en : R/W; bitpos: [14]; default: 0;
* Set this bit to enable SPI0 and SPI1 ECC 16 bytes data with 2 ECC bytes mode when
* accesses flash.
*/
uint32_t mem_ecc_16to18_byte_en:1;
uint32_t reserved_15:9;
/** mem_split_trans_en : R/W; bitpos: [24]; default: 1;
* Set this bit to enable SPI0 split one AXI read flash transfer into two SPI
* transfers when one transfer will cross flash or EXT_RAM page corner, valid no
* matter whether there is an ECC region or not.
*/
uint32_t mem_split_trans_en:1;
/** mem_cs_hold_delay : R/W; bitpos: [30:25]; default: 0;
* These bits are used to set the minimum CS high time tSHSL between SPI burst
* transfer when accesses to flash. tSHSL is (SPI_MEM_S_CS_HOLD_DELAY[5:0] + 1) MSPI
* core clock cycles.
*/
uint32_t mem_cs_hold_delay:6;
/** mem_sync_reset : WT; bitpos: [31]; default: 0;
* The spi0_mst_st and spi0_slv_st will be reset.
*/
uint32_t mem_sync_reset:1;
};
uint32_t val;
} spi_mem_s_ctrl2_reg_t;
/** Type of mem_misc register
* SPI0 misc register
*/
typedef union {
struct {
uint32_t reserved_0:7;
/** mem_fsub_pin : R/W; bitpos: [7]; default: 0;
* For SPI0, flash is connected to SUBPINs.
*/
uint32_t mem_fsub_pin:1;
/** mem_ssub_pin : R/W; bitpos: [8]; default: 0;
* For SPI0, sram is connected to SUBPINs.
*/
uint32_t mem_ssub_pin:1;
/** mem_ck_idle_edge : R/W; bitpos: [9]; default: 0;
* 1: SPI_CLK line is high when idle 0: spi clk line is low when idle
*/
uint32_t mem_ck_idle_edge:1;
/** mem_cs_keep_active : R/W; bitpos: [10]; default: 0;
* SPI_CS line keep low when the bit is set.
*/
uint32_t mem_cs_keep_active:1;
uint32_t reserved_11:21;
};
uint32_t val;
} spi_mem_s_misc_reg_t;
/** Type of mem_cache_fctrl register
* SPI0 bit mode control register.
*/
typedef union {
struct {
/** mem_axi_req_en : R/W; bitpos: [0]; default: 0;
* For SPI0, AXI master access enable, 1: enable, 0:disable.
*/
uint32_t mem_axi_req_en:1;
/** mem_cache_usr_addr_4byte : R/W; bitpos: [1]; default: 0;
* For SPI0, cache read flash with 4 bytes address, 1: enable, 0:disable.
*/
uint32_t mem_cache_usr_addr_4byte:1;
/** mem_cache_flash_usr_cmd : R/W; bitpos: [2]; default: 0;
* For SPI0, cache read flash for user define command, 1: enable, 0:disable.
*/
uint32_t mem_cache_flash_usr_cmd:1;
/** mem_fdin_dual : R/W; bitpos: [3]; default: 0;
* For SPI0 flash, din phase apply 2 signals. 1: enable 0: disable. The bit is the
* same with spi_mem_s_fread_dio.
*/
uint32_t mem_fdin_dual:1;
/** mem_fdout_dual : R/W; bitpos: [4]; default: 0;
* For SPI0 flash, dout phase apply 2 signals. 1: enable 0: disable. The bit is the
* same with spi_mem_s_fread_dio.
*/
uint32_t mem_fdout_dual:1;
/** mem_faddr_dual : R/W; bitpos: [5]; default: 0;
* For SPI0 flash, address phase apply 2 signals. 1: enable 0: disable. The bit is
* the same with spi_mem_s_fread_dio.
*/
uint32_t mem_faddr_dual:1;
/** mem_fdin_quad : R/W; bitpos: [6]; default: 0;
* For SPI0 flash, din phase apply 4 signals. 1: enable 0: disable. The bit is the
* same with spi_mem_s_fread_qio.
*/
uint32_t mem_fdin_quad:1;
/** mem_fdout_quad : R/W; bitpos: [7]; default: 0;
* For SPI0 flash, dout phase apply 4 signals. 1: enable 0: disable. The bit is the
* same with spi_mem_s_fread_qio.
*/
uint32_t mem_fdout_quad:1;
/** mem_faddr_quad : R/W; bitpos: [8]; default: 0;
* For SPI0 flash, address phase apply 4 signals. 1: enable 0: disable. The bit is
* the same with spi_mem_s_fread_qio.
*/
uint32_t mem_faddr_quad:1;
uint32_t reserved_9:21;
/** same_aw_ar_addr_chk_en : R/W; bitpos: [30]; default: 1;
* Set this bit to check AXI read/write the same address region.
*/
uint32_t same_aw_ar_addr_chk_en:1;
/** close_axi_inf_en : R/W; bitpos: [31]; default: 1;
* Set this bit to close AXI read/write transfer to MSPI, which means that only
* SLV_ERR will be replied to BRESP/RRESP.
*/
uint32_t close_axi_inf_en:1;
};
uint32_t val;
} spi_mem_s_cache_fctrl_reg_t;
/** Type of mem_ddr register
* SPI0 flash DDR mode control register
*/
typedef union {
struct {
/** fmem_ddr_en : R/W; bitpos: [0]; default: 0;
* 1: in DDR mode, 0 in SDR mode
*/
uint32_t fmem_ddr_en:1;
/** fmem_var_dummy : R/W; bitpos: [1]; default: 0;
* Set the bit to enable variable dummy cycle in spi DDR mode.
*/
uint32_t fmem_var_dummy:1;
/** fmem_ddr_rdat_swp : R/W; bitpos: [2]; default: 0;
* Set the bit to reorder rx data of the word in spi DDR mode.
*/
uint32_t fmem_ddr_rdat_swp:1;
/** fmem_ddr_wdat_swp : R/W; bitpos: [3]; default: 0;
* Set the bit to reorder tx data of the word in spi DDR mode.
*/
uint32_t fmem_ddr_wdat_swp:1;
/** fmem_ddr_cmd_dis : R/W; bitpos: [4]; default: 0;
* the bit is used to disable dual edge in command phase when DDR mode.
*/
uint32_t fmem_ddr_cmd_dis:1;
/** fmem_outminbytelen : R/W; bitpos: [11:5]; default: 1;
* It is the minimum output data length in the panda device.
*/
uint32_t fmem_outminbytelen:7;
/** fmem_tx_ddr_msk_en : R/W; bitpos: [12]; default: 1;
* Set this bit to mask the first or the last byte in SPI0 ECC DDR write mode, when
* accesses to flash.
*/
uint32_t fmem_tx_ddr_msk_en:1;
/** fmem_rx_ddr_msk_en : R/W; bitpos: [13]; default: 1;
* Set this bit to mask the first or the last byte in SPI0 ECC DDR read mode, when
* accesses to flash.
*/
uint32_t fmem_rx_ddr_msk_en:1;
/** fmem_usr_ddr_dqs_thd : R/W; bitpos: [20:14]; default: 0;
* The delay number of data strobe which from memory based on SPI clock.
*/
uint32_t fmem_usr_ddr_dqs_thd:7;
/** fmem_ddr_dqs_loop : R/W; bitpos: [21]; default: 0;
* 1: Do not need the input of SPI_DQS signal, SPI0 starts to receive data when
* spi0_slv_st is in SPI_MEM_S_DIN state. It is used when there is no SPI_DQS signal or
* SPI_DQS signal is not stable. 0: SPI0 starts to store data at the positive and
* negative edge of SPI_DQS.
*/
uint32_t fmem_ddr_dqs_loop:1;
uint32_t reserved_22:2;
/** fmem_clk_diff_en : R/W; bitpos: [24]; default: 0;
* Set this bit to enable the differential SPI_CLK#.
*/
uint32_t fmem_clk_diff_en:1;
uint32_t reserved_25:1;
/** fmem_dqs_ca_in : R/W; bitpos: [26]; default: 0;
* Set this bit to enable the input of SPI_DQS signal in SPI phases of CMD and ADDR.
*/
uint32_t fmem_dqs_ca_in:1;
/** fmem_hyperbus_dummy_2x : R/W; bitpos: [27]; default: 0;
* Set this bit to enable the vary dummy function in SPI HyperBus mode, when SPI0
* accesses flash or SPI1 accesses flash or sram.
*/
uint32_t fmem_hyperbus_dummy_2x:1;
/** fmem_clk_diff_inv : R/W; bitpos: [28]; default: 0;
* Set this bit to invert SPI_DIFF when accesses to flash. .
*/
uint32_t fmem_clk_diff_inv:1;
/** fmem_octa_ram_addr : R/W; bitpos: [29]; default: 0;
* Set this bit to enable octa_ram address out when accesses to flash, which means
* ADDR_OUT[31:0] = {spi_usr_addr_value[25:4], 6'd0, spi_usr_addr_value[3:1], 1'b0}.
*/
uint32_t fmem_octa_ram_addr:1;
/** fmem_hyperbus_ca : R/W; bitpos: [30]; default: 0;
* Set this bit to enable HyperRAM address out when accesses to flash, which means
* ADDR_OUT[31:0] = {spi_usr_addr_value[19:4], 13'd0, spi_usr_addr_value[3:1]}.
*/
uint32_t fmem_hyperbus_ca:1;
uint32_t reserved_31:1;
};
uint32_t val;
} spi_mem_s_ddr_reg_t;
/** Group: Clock control and configuration registers */
/** Type of mem_clock register
* SPI clock division control register.
*/
typedef union {
struct {
/** mem_clkcnt_l : R/W; bitpos: [7:0]; default: 3;
* In the master mode it must be equal to spi_mem_s_clkcnt_N.
*/
uint32_t mem_clkcnt_l:8;
/** mem_clkcnt_h : R/W; bitpos: [15:8]; default: 1;
* In the master mode it must be floor((spi_mem_s_clkcnt_N+1)/2-1).
*/
uint32_t mem_clkcnt_h:8;
/** mem_clkcnt_n : R/W; bitpos: [23:16]; default: 3;
* In the master mode it is the divider of spi_mem_s_clk. So spi_mem_s_clk frequency is
* system/(spi_mem_s_clkcnt_N+1)
*/
uint32_t mem_clkcnt_n:8;
uint32_t reserved_24:7;
/** mem_clk_equ_sysclk : R/W; bitpos: [31]; default: 0;
* 1: 1-division mode, the frequency of SPI bus clock equals to that of MSPI module
* clock.
*/
uint32_t mem_clk_equ_sysclk:1;
};
uint32_t val;
} spi_mem_s_clock_reg_t;
/** Type of mem_sram_clk register
* SPI0 external RAM clock control register
*/
typedef union {
struct {
/** mem_sclkcnt_l : R/W; bitpos: [7:0]; default: 3;
* For SPI0 external RAM interface, it must be equal to spi_mem_s_clkcnt_N.
*/
uint32_t mem_sclkcnt_l:8;
/** mem_sclkcnt_h : R/W; bitpos: [15:8]; default: 1;
* For SPI0 external RAM interface, it must be floor((spi_mem_s_clkcnt_N+1)/2-1).
*/
uint32_t mem_sclkcnt_h:8;
/** mem_sclkcnt_n : R/W; bitpos: [23:16]; default: 3;
* For SPI0 external RAM interface, it is the divider of spi_mem_s_clk. So spi_mem_s_clk
* frequency is system/(spi_mem_s_clkcnt_N+1)
*/
uint32_t mem_sclkcnt_n:8;
uint32_t reserved_24:7;
/** mem_sclk_equ_sysclk : R/W; bitpos: [31]; default: 0;
* For SPI0 external RAM interface, 1: spi_mem_s_clk is eqaul to system 0: spi_mem_s_clk
* is divided from system clock.
*/
uint32_t mem_sclk_equ_sysclk:1;
};
uint32_t val;
} spi_mem_s_sram_clk_reg_t;
/** Type of mem_clock_gate register
* SPI0 clock gate register
*/
typedef union {
struct {
/** clk_en : R/W; bitpos: [0]; default: 1;
* Register clock gate enable signal. 1: Enable. 0: Disable.
*/
uint32_t clk_en:1;
uint32_t reserved_1:31;
};
uint32_t val;
} spi_mem_s_clock_gate_reg_t;
/** Group: Flash User-defined control registers */
/** Type of mem_user register
* SPI0 user register.
*/
typedef union {
struct {
uint32_t reserved_0:6;
/** mem_cs_hold : R/W; bitpos: [6]; default: 0;
* spi cs keep low when spi is in done phase. 1: enable 0: disable.
*/
uint32_t mem_cs_hold:1;
/** mem_cs_setup : R/W; bitpos: [7]; default: 0;
* spi cs is enable when spi is in prepare phase. 1: enable 0: disable.
*/
uint32_t mem_cs_setup:1;
uint32_t reserved_8:1;
/** mem_ck_out_edge : R/W; bitpos: [9]; default: 0;
* The bit combined with SPI_MEM_S_CK_IDLE_EDGE bit to control SPI clock mode 0~3.
*/
uint32_t mem_ck_out_edge:1;
uint32_t reserved_10:16;
/** mem_usr_dummy_idle : R/W; bitpos: [26]; default: 0;
* spi clock is disable in dummy phase when the bit is enable.
*/
uint32_t mem_usr_dummy_idle:1;
uint32_t reserved_27:2;
/** mem_usr_dummy : R/W; bitpos: [29]; default: 0;
* This bit enable the dummy phase of an operation.
*/
uint32_t mem_usr_dummy:1;
uint32_t reserved_30:2;
};
uint32_t val;
} spi_mem_s_user_reg_t;
/** Type of mem_user1 register
* SPI0 user1 register.
*/
typedef union {
struct {
/** mem_usr_dummy_cyclelen : R/W; bitpos: [5:0]; default: 7;
* The length in spi_mem_s_clk cycles of dummy phase. The register value shall be
* (cycle_num-1).
*/
uint32_t mem_usr_dummy_cyclelen:6;
/** mem_usr_dbytelen : HRO; bitpos: [8:6]; default: 1;
* SPI0 USR_CMD read or write data byte length -1
*/
uint32_t mem_usr_dbytelen:3;
uint32_t reserved_9:17;
/** mem_usr_addr_bitlen : R/W; bitpos: [31:26]; default: 23;
* The length in bits of address phase. The register value shall be (bit_num-1).
*/
uint32_t mem_usr_addr_bitlen:6;
};
uint32_t val;
} spi_mem_s_user1_reg_t;
/** Type of mem_user2 register
* SPI0 user2 register.
*/
typedef union {
struct {
/** mem_usr_command_value : R/W; bitpos: [15:0]; default: 0;
* The value of command.
*/
uint32_t mem_usr_command_value:16;
uint32_t reserved_16:12;
/** mem_usr_command_bitlen : R/W; bitpos: [31:28]; default: 7;
* The length in bits of command phase. The register value shall be (bit_num-1)
*/
uint32_t mem_usr_command_bitlen:4;
};
uint32_t val;
} spi_mem_s_user2_reg_t;
/** Type of mem_rd_status register
* SPI0 read control register.
*/
typedef union {
struct {
uint32_t reserved_0:16;
/** mem_wb_mode : R/W; bitpos: [23:16]; default: 0;
* Mode bits in the flash fast read mode it is combined with spi_mem_s_fastrd_mode bit.
*/
uint32_t mem_wb_mode:8;
uint32_t reserved_24:8;
};
uint32_t val;
} spi_mem_s_rd_status_reg_t;
/** Group: External RAM Control and configuration registers */
/** Type of mem_cache_sctrl register
* SPI0 external RAM control register
*/
typedef union {
struct {
/** mem_cache_usr_saddr_4byte : R/W; bitpos: [0]; default: 0;
* For SPI0, In the external RAM mode, cache read flash with 4 bytes command, 1:
* enable, 0:disable.
*/
uint32_t mem_cache_usr_saddr_4byte:1;
/** mem_usr_sram_dio : R/W; bitpos: [1]; default: 0;
* For SPI0, In the external RAM mode, spi dual I/O mode enable, 1: enable, 0:disable
*/
uint32_t mem_usr_sram_dio:1;
/** mem_usr_sram_qio : R/W; bitpos: [2]; default: 0;
* For SPI0, In the external RAM mode, spi quad I/O mode enable, 1: enable, 0:disable
*/
uint32_t mem_usr_sram_qio:1;
/** mem_usr_wr_sram_dummy : R/W; bitpos: [3]; default: 0;
* For SPI0, In the external RAM mode, it is the enable bit of dummy phase for write
* operations.
*/
uint32_t mem_usr_wr_sram_dummy:1;
/** mem_usr_rd_sram_dummy : R/W; bitpos: [4]; default: 1;
* For SPI0, In the external RAM mode, it is the enable bit of dummy phase for read
* operations.
*/
uint32_t mem_usr_rd_sram_dummy:1;
/** mem_cache_sram_usr_rcmd : R/W; bitpos: [5]; default: 1;
* For SPI0, In the external RAM mode cache read external RAM for user define command.
*/
uint32_t mem_cache_sram_usr_rcmd:1;
/** mem_sram_rdummy_cyclelen : R/W; bitpos: [11:6]; default: 1;
* For SPI0, In the external RAM mode, it is the length in bits of read dummy phase.
* The register value shall be (bit_num-1).
*/
uint32_t mem_sram_rdummy_cyclelen:6;
uint32_t reserved_12:2;
/** mem_sram_addr_bitlen : R/W; bitpos: [19:14]; default: 23;
* For SPI0, In the external RAM mode, it is the length in bits of address phase. The
* register value shall be (bit_num-1).
*/
uint32_t mem_sram_addr_bitlen:6;
/** mem_cache_sram_usr_wcmd : R/W; bitpos: [20]; default: 1;
* For SPI0, In the external RAM mode cache write sram for user define command
*/
uint32_t mem_cache_sram_usr_wcmd:1;
/** mem_sram_oct : R/W; bitpos: [21]; default: 0;
* reserved
*/
uint32_t mem_sram_oct:1;
/** mem_sram_wdummy_cyclelen : R/W; bitpos: [27:22]; default: 1;
* For SPI0, In the external RAM mode, it is the length in bits of write dummy phase.
* The register value shall be (bit_num-1).
*/
uint32_t mem_sram_wdummy_cyclelen:6;
uint32_t reserved_28:4;
};
uint32_t val;
} spi_mem_s_cache_sctrl_reg_t;
/** Type of mem_sram_cmd register
* SPI0 external RAM mode control register
*/
typedef union {
struct {
/** mem_sclk_mode : R/W; bitpos: [1:0]; default: 0;
* SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed
* one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3:
* SPI clock is always on.
*/
uint32_t mem_sclk_mode:2;
/** mem_swb_mode : R/W; bitpos: [9:2]; default: 0;
* Mode bits in the external RAM fast read mode it is combined with
* spi_mem_s_fastrd_mode bit.
*/
uint32_t mem_swb_mode:8;
/** mem_sdin_dual : R/W; bitpos: [10]; default: 0;
* For SPI0 external RAM , din phase apply 2 signals. 1: enable 0: disable. The bit is
* the same with spi_mem_s_usr_sram_dio.
*/
uint32_t mem_sdin_dual:1;
/** mem_sdout_dual : R/W; bitpos: [11]; default: 0;
* For SPI0 external RAM , dout phase apply 2 signals. 1: enable 0: disable. The bit
* is the same with spi_mem_s_usr_sram_dio.
*/
uint32_t mem_sdout_dual:1;
/** mem_saddr_dual : R/W; bitpos: [12]; default: 0;
* For SPI0 external RAM , address phase apply 2 signals. 1: enable 0: disable. The
* bit is the same with spi_mem_s_usr_sram_dio.
*/
uint32_t mem_saddr_dual:1;
uint32_t reserved_13:1;
/** mem_sdin_quad : R/W; bitpos: [14]; default: 0;
* For SPI0 external RAM , din phase apply 4 signals. 1: enable 0: disable. The bit is
* the same with spi_mem_s_usr_sram_qio.
*/
uint32_t mem_sdin_quad:1;
/** mem_sdout_quad : R/W; bitpos: [15]; default: 0;
* For SPI0 external RAM , dout phase apply 4 signals. 1: enable 0: disable. The bit
* is the same with spi_mem_s_usr_sram_qio.
*/
uint32_t mem_sdout_quad:1;
/** mem_saddr_quad : R/W; bitpos: [16]; default: 0;
* For SPI0 external RAM , address phase apply 4 signals. 1: enable 0: disable. The
* bit is the same with spi_mem_s_usr_sram_qio.
*/
uint32_t mem_saddr_quad:1;
/** mem_scmd_quad : R/W; bitpos: [17]; default: 0;
* For SPI0 external RAM , cmd phase apply 4 signals. 1: enable 0: disable. The bit is
* the same with spi_mem_s_usr_sram_qio.
*/
uint32_t mem_scmd_quad:1;
/** mem_sdin_oct : R/W; bitpos: [18]; default: 0;
* For SPI0 external RAM , din phase apply 8 signals. 1: enable 0: disable.
*/
uint32_t mem_sdin_oct:1;
/** mem_sdout_oct : R/W; bitpos: [19]; default: 0;
* For SPI0 external RAM , dout phase apply 8 signals. 1: enable 0: disable.
*/
uint32_t mem_sdout_oct:1;
/** mem_saddr_oct : R/W; bitpos: [20]; default: 0;
* For SPI0 external RAM , address phase apply 4 signals. 1: enable 0: disable.
*/
uint32_t mem_saddr_oct:1;
/** mem_scmd_oct : R/W; bitpos: [21]; default: 0;
* For SPI0 external RAM , cmd phase apply 8 signals. 1: enable 0: disable.
*/
uint32_t mem_scmd_oct:1;
/** mem_sdummy_rin : R/W; bitpos: [22]; default: 1;
* In the dummy phase of a MSPI read data transfer when accesses to external RAM, the
* signal level of SPI bus is output by the MSPI controller.
*/
uint32_t mem_sdummy_rin:1;
/** mem_sdummy_wout : R/W; bitpos: [23]; default: 1;
* In the dummy phase of a MSPI write data transfer when accesses to external RAM, the
* signal level of SPI bus is output by the MSPI controller.
*/
uint32_t mem_sdummy_wout:1;
/** smem_wdummy_dqs_always_out : R/W; bitpos: [24]; default: 0;
* In the dummy phase of an MSPI write data transfer when accesses to external RAM,
* the level of SPI_DQS is output by the MSPI controller.
*/
uint32_t smem_wdummy_dqs_always_out:1;
/** smem_wdummy_always_out : R/W; bitpos: [25]; default: 0;
* In the dummy phase of an MSPI write data transfer when accesses to external RAM,
* the level of SPI_IO[7:0] is output by the MSPI controller.
*/
uint32_t smem_wdummy_always_out:1;
/** mem_sdin_hex : R/W; bitpos: [26]; default: 0;
* For SPI0 external RAM , din phase apply 16 signals. 1: enable 0: disable.
*/
uint32_t mem_sdin_hex:1;
/** mem_sdout_hex : R/W; bitpos: [27]; default: 0;
* For SPI0 external RAM , dout phase apply 16 signals. 1: enable 0: disable.
*/
uint32_t mem_sdout_hex:1;
uint32_t reserved_28:2;
/** smem_dqs_ie_always_on : R/W; bitpos: [30]; default: 0;
* When accesses to external RAM, 1: the IE signals of pads connected to SPI_DQS are
* always 1. 0: Others.
*/
uint32_t smem_dqs_ie_always_on:1;
/** smem_data_ie_always_on : R/W; bitpos: [31]; default: 1;
* When accesses to external RAM, 1: the IE signals of pads connected to SPI_IO[7:0]
* are always 1. 0: Others.
*/
uint32_t smem_data_ie_always_on:1;
};
uint32_t val;
} spi_mem_s_sram_cmd_reg_t;
/** Type of mem_sram_drd_cmd register
* SPI0 external RAM DDR read command control register
*/
typedef union {
struct {
/** mem_cache_sram_usr_rd_cmd_value : R/W; bitpos: [15:0]; default: 0;
* For SPI0,When cache mode is enable it is the read command value of command phase
* for sram.
*/
uint32_t mem_cache_sram_usr_rd_cmd_value:16;
uint32_t reserved_16:12;
/** mem_cache_sram_usr_rd_cmd_bitlen : R/W; bitpos: [31:28]; default: 0;
* For SPI0,When cache mode is enable it is the length in bits of command phase for
* sram. The register value shall be (bit_num-1).
*/
uint32_t mem_cache_sram_usr_rd_cmd_bitlen:4;
};
uint32_t val;
} spi_mem_s_sram_drd_cmd_reg_t;
/** Type of mem_sram_dwr_cmd register
* SPI0 external RAM DDR write command control register
*/
typedef union {
struct {
/** mem_cache_sram_usr_wr_cmd_value : R/W; bitpos: [15:0]; default: 0;
* For SPI0,When cache mode is enable it is the write command value of command phase
* for sram.
*/
uint32_t mem_cache_sram_usr_wr_cmd_value:16;
uint32_t reserved_16:12;
/** mem_cache_sram_usr_wr_cmd_bitlen : R/W; bitpos: [31:28]; default: 0;
* For SPI0,When cache mode is enable it is the in bits of command phase for sram.
* The register value shall be (bit_num-1).
*/
uint32_t mem_cache_sram_usr_wr_cmd_bitlen:4;
};
uint32_t val;
} spi_mem_s_sram_dwr_cmd_reg_t;
/** Type of smem_ddr register
* SPI0 external RAM DDR mode control register
*/
typedef union {
struct {
/** smem_ddr_en : R/W; bitpos: [0]; default: 0;
* 1: in DDR mode, 0 in SDR mode
*/
uint32_t smem_ddr_en:1;
/** smem_var_dummy : R/W; bitpos: [1]; default: 0;
* Set the bit to enable variable dummy cycle in spi DDR mode.
*/
uint32_t smem_var_dummy:1;
/** smem_ddr_rdat_swp : R/W; bitpos: [2]; default: 0;
* Set the bit to reorder rx data of the word in spi DDR mode.
*/
uint32_t smem_ddr_rdat_swp:1;
/** smem_ddr_wdat_swp : R/W; bitpos: [3]; default: 0;
* Set the bit to reorder tx data of the word in spi DDR mode.
*/
uint32_t smem_ddr_wdat_swp:1;
/** smem_ddr_cmd_dis : R/W; bitpos: [4]; default: 0;
* the bit is used to disable dual edge in command phase when DDR mode.
*/
uint32_t smem_ddr_cmd_dis:1;
/** smem_outminbytelen : R/W; bitpos: [11:5]; default: 1;
* It is the minimum output data length in the DDR psram.
*/
uint32_t smem_outminbytelen:7;
/** smem_tx_ddr_msk_en : R/W; bitpos: [12]; default: 1;
* Set this bit to mask the first or the last byte in SPI0 ECC DDR write mode, when
* accesses to external RAM.
*/
uint32_t smem_tx_ddr_msk_en:1;
/** smem_rx_ddr_msk_en : R/W; bitpos: [13]; default: 1;
* Set this bit to mask the first or the last byte in SPI0 ECC DDR read mode, when
* accesses to external RAM.
*/
uint32_t smem_rx_ddr_msk_en:1;
/** smem_usr_ddr_dqs_thd : R/W; bitpos: [20:14]; default: 0;
* The delay number of data strobe which from memory based on SPI clock.
*/
uint32_t smem_usr_ddr_dqs_thd:7;
/** smem_ddr_dqs_loop : R/W; bitpos: [21]; default: 0;
* 1: Do not need the input of SPI_DQS signal, SPI0 starts to receive data when
* spi0_slv_st is in SPI_MEM_S_DIN state. It is used when there is no SPI_DQS signal or
* SPI_DQS signal is not stable. 0: SPI0 starts to store data at the positive and
* negative edge of SPI_DQS.
*/
uint32_t smem_ddr_dqs_loop:1;
uint32_t reserved_22:2;
/** smem_clk_diff_en : R/W; bitpos: [24]; default: 0;
* Set this bit to enable the differential SPI_CLK#.
*/
uint32_t smem_clk_diff_en:1;
uint32_t reserved_25:1;
/** smem_dqs_ca_in : R/W; bitpos: [26]; default: 0;
* Set this bit to enable the input of SPI_DQS signal in SPI phases of CMD and ADDR.
*/
uint32_t smem_dqs_ca_in:1;
/** smem_hyperbus_dummy_2x : R/W; bitpos: [27]; default: 0;
* Set this bit to enable the vary dummy function in SPI HyperBus mode, when SPI0
* accesses flash or SPI1 accesses flash or sram.
*/
uint32_t smem_hyperbus_dummy_2x:1;
/** smem_clk_diff_inv : R/W; bitpos: [28]; default: 0;
* Set this bit to invert SPI_DIFF when accesses to external RAM. .
*/
uint32_t smem_clk_diff_inv:1;
/** smem_octa_ram_addr : R/W; bitpos: [29]; default: 0;
* Set this bit to enable octa_ram address out when accesses to external RAM, which
* means ADDR_OUT[31:0] = {spi_usr_addr_value[25:4], 6'd0, spi_usr_addr_value[3:1],
* 1'b0}.
*/
uint32_t smem_octa_ram_addr:1;
/** smem_hyperbus_ca : R/W; bitpos: [30]; default: 0;
* Set this bit to enable HyperRAM address out when accesses to external RAM, which
* means ADDR_OUT[31:0] = {spi_usr_addr_value[19:4], 13'd0, spi_usr_addr_value[3:1]}.
*/
uint32_t smem_hyperbus_ca:1;
uint32_t reserved_31:1;
};
uint32_t val;
} spi_mem_s_smem_ddr_reg_t;
/** Type of smem_ac register
* MSPI external RAM ECC and SPI CS timing control register
*/
typedef union {
struct {
/** smem_cs_setup : R/W; bitpos: [0]; default: 0;
* For SPI0 and SPI1, spi cs is enable when spi is in prepare phase. 1: enable 0:
* disable.
*/
uint32_t smem_cs_setup:1;
/** smem_cs_hold : R/W; bitpos: [1]; default: 0;
* For SPI0 and SPI1, spi cs keep low when spi is in done phase. 1: enable 0: disable.
*/
uint32_t smem_cs_hold:1;
/** smem_cs_setup_time : R/W; bitpos: [6:2]; default: 1;
* For spi0, (cycles-1) of prepare phase by spi clock this bits are combined with
* spi_mem_s_cs_setup bit.
*/
uint32_t smem_cs_setup_time:5;
/** smem_cs_hold_time : R/W; bitpos: [11:7]; default: 1;
* For SPI0 and SPI1, spi cs signal is delayed to inactive by spi clock this bits are
* combined with spi_mem_s_cs_hold bit.
*/
uint32_t smem_cs_hold_time:5;
/** smem_ecc_cs_hold_time : R/W; bitpos: [14:12]; default: 3;
* SPI_MEM_S_SMEM_CS_HOLD_TIME + SPI_MEM_S_SMEM_ECC_CS_HOLD_TIME is the SPI0 and SPI1 CS hold
* cycles in ECC mode when accessed external RAM.
*/
uint32_t smem_ecc_cs_hold_time:3;
/** smem_ecc_skip_page_corner : R/W; bitpos: [15]; default: 1;
* 1: SPI0 skips page corner when accesses external RAM. 0: Not skip page corner when
* accesses external RAM.
*/
uint32_t smem_ecc_skip_page_corner:1;
/** smem_ecc_16to18_byte_en : R/W; bitpos: [16]; default: 0;
* Set this bit to enable SPI0 and SPI1 ECC 16 bytes data with 2 ECC bytes mode when
* accesses external RAM.
*/
uint32_t smem_ecc_16to18_byte_en:1;
uint32_t reserved_17:8;
/** smem_cs_hold_delay : R/W; bitpos: [30:25]; default: 0;
* These bits are used to set the minimum CS high time tSHSL between SPI burst
* transfer when accesses to external RAM. tSHSL is (SPI_MEM_S_SMEM_CS_HOLD_DELAY[5:0] + 1)
* MSPI core clock cycles.
*/
uint32_t smem_cs_hold_delay:6;
/** smem_split_trans_en : R/W; bitpos: [31]; default: 1;
* Set this bit to enable SPI0 split one AXI accesses EXT_RAM transfer into two SPI
* transfers when one transfer will cross flash/EXT_RAM page corner, valid no matter
* whether there is an ECC region or not.
*/
uint32_t smem_split_trans_en:1;
};
uint32_t val;
} spi_mem_s_smem_ac_reg_t;
/** Group: State control register */
/** Type of mem_fsm register
* SPI0 FSM status register
*/
typedef union {
struct {
uint32_t reserved_0:7;
/** mem_lock_delay_time : R/W; bitpos: [11:7]; default: 4;
* The lock delay time of SPI0/1 arbiter by spi0_slv_st, after PER is sent by SPI1.
*/
uint32_t mem_lock_delay_time:5;
uint32_t reserved_12:20;
};
uint32_t val;
} spi_mem_s_fsm_reg_t;
/** Group: Interrupt registers */
/** Type of mem_int_ena register
* SPI0 interrupt enable register
*/
typedef union {
struct {
uint32_t reserved_0:3;
/** mem_slv_st_end_int_ena : R/W; bitpos: [3]; default: 0;
* The enable bit for SPI_MEM_S_SLV_ST_END_INT interrupt.
*/
uint32_t mem_slv_st_end_int_ena:1;
/** mem_mst_st_end_int_ena : R/W; bitpos: [4]; default: 0;
* The enable bit for SPI_MEM_S_MST_ST_END_INT interrupt.
*/
uint32_t mem_mst_st_end_int_ena:1;
/** mem_ecc_err_int_ena : R/W; bitpos: [5]; default: 0;
* The enable bit for SPI_MEM_S_ECC_ERR_INT interrupt.
*/
uint32_t mem_ecc_err_int_ena:1;
/** mem_pms_reject_int_ena : R/W; bitpos: [6]; default: 0;
* The enable bit for SPI_MEM_S_PMS_REJECT_INT interrupt.
*/
uint32_t mem_pms_reject_int_ena:1;
/** mem_axi_raddr_err_int_ena : R/W; bitpos: [7]; default: 0;
* The enable bit for SPI_MEM_S_AXI_RADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_raddr_err_int_ena:1;
/** mem_axi_wr_flash_err_int_ena : R/W; bitpos: [8]; default: 0;
* The enable bit for SPI_MEM_S_AXI_WR_FALSH_ERR_INT interrupt.
*/
uint32_t mem_axi_wr_flash_err_int_ena:1;
/** mem_axi_waddr_err_int__ena : R/W; bitpos: [9]; default: 0;
* The enable bit for SPI_MEM_S_AXI_WADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_waddr_err_int__ena:1;
uint32_t reserved_10:18;
/** mem_dqs0_afifo_ovf_int_ena : R/W; bitpos: [28]; default: 0;
* The enable bit for SPI_MEM_S_DQS0_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs0_afifo_ovf_int_ena:1;
/** mem_dqs1_afifo_ovf_int_ena : R/W; bitpos: [29]; default: 0;
* The enable bit for SPI_MEM_S_DQS1_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs1_afifo_ovf_int_ena:1;
/** mem_bus_fifo1_udf_int_ena : R/W; bitpos: [30]; default: 0;
* The enable bit for SPI_MEM_S_BUS_FIFO1_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo1_udf_int_ena:1;
/** mem_bus_fifo0_udf_int_ena : R/W; bitpos: [31]; default: 0;
* The enable bit for SPI_MEM_S_BUS_FIFO0_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo0_udf_int_ena:1;
};
uint32_t val;
} spi_mem_s_int_ena_reg_t;
/** Type of mem_int_clr register
* SPI0 interrupt clear register
*/
typedef union {
struct {
uint32_t reserved_0:3;
/** mem_slv_st_end_int_clr : WT; bitpos: [3]; default: 0;
* The clear bit for SPI_MEM_S_SLV_ST_END_INT interrupt.
*/
uint32_t mem_slv_st_end_int_clr:1;
/** mem_mst_st_end_int_clr : WT; bitpos: [4]; default: 0;
* The clear bit for SPI_MEM_S_MST_ST_END_INT interrupt.
*/
uint32_t mem_mst_st_end_int_clr:1;
/** mem_ecc_err_int_clr : WT; bitpos: [5]; default: 0;
* The clear bit for SPI_MEM_S_ECC_ERR_INT interrupt.
*/
uint32_t mem_ecc_err_int_clr:1;
/** mem_pms_reject_int_clr : WT; bitpos: [6]; default: 0;
* The clear bit for SPI_MEM_S_PMS_REJECT_INT interrupt.
*/
uint32_t mem_pms_reject_int_clr:1;
/** mem_axi_raddr_err_int_clr : WT; bitpos: [7]; default: 0;
* The clear bit for SPI_MEM_S_AXI_RADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_raddr_err_int_clr:1;
/** mem_axi_wr_flash_err_int_clr : WT; bitpos: [8]; default: 0;
* The clear bit for SPI_MEM_S_AXI_WR_FALSH_ERR_INT interrupt.
*/
uint32_t mem_axi_wr_flash_err_int_clr:1;
/** mem_axi_waddr_err_int_clr : WT; bitpos: [9]; default: 0;
* The clear bit for SPI_MEM_S_AXI_WADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_waddr_err_int_clr:1;
uint32_t reserved_10:18;
/** mem_dqs0_afifo_ovf_int_clr : WT; bitpos: [28]; default: 0;
* The clear bit for SPI_MEM_S_DQS0_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs0_afifo_ovf_int_clr:1;
/** mem_dqs1_afifo_ovf_int_clr : WT; bitpos: [29]; default: 0;
* The clear bit for SPI_MEM_S_DQS1_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs1_afifo_ovf_int_clr:1;
/** mem_bus_fifo1_udf_int_clr : WT; bitpos: [30]; default: 0;
* The clear bit for SPI_MEM_S_BUS_FIFO1_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo1_udf_int_clr:1;
/** mem_bus_fifo0_udf_int_clr : WT; bitpos: [31]; default: 0;
* The clear bit for SPI_MEM_S_BUS_FIFO0_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo0_udf_int_clr:1;
};
uint32_t val;
} spi_mem_s_int_clr_reg_t;
/** Type of mem_int_raw register
* SPI0 interrupt raw register
*/
typedef union {
struct {
uint32_t reserved_0:3;
/** mem_slv_st_end_int_raw : R/WTC/SS; bitpos: [3]; default: 0;
* The raw bit for SPI_MEM_S_SLV_ST_END_INT interrupt. 1: Triggered when spi0_slv_st is
* changed from non idle state to idle state. It means that SPI_CS raises high. 0:
* Others
*/
uint32_t mem_slv_st_end_int_raw:1;
/** mem_mst_st_end_int_raw : R/WTC/SS; bitpos: [4]; default: 0;
* The raw bit for SPI_MEM_S_MST_ST_END_INT interrupt. 1: Triggered when spi0_mst_st is
* changed from non idle state to idle state. 0: Others.
*/
uint32_t mem_mst_st_end_int_raw:1;
/** mem_ecc_err_int_raw : R/WTC/SS; bitpos: [5]; default: 0;
* The raw bit for SPI_MEM_S_ECC_ERR_INT interrupt. When SPI_MEM_S_FMEM_ECC_ERR_INT_EN is set
* and SPI_MEM_S_SMEM_ECC_ERR_INT_EN is cleared, this bit is triggered when the error times
* of SPI0/1 ECC read flash are equal or bigger than SPI_MEM_S_ECC_ERR_INT_NUM. When
* SPI_MEM_S_FMEM_ECC_ERR_INT_EN is cleared and SPI_MEM_S_SMEM_ECC_ERR_INT_EN is set, this bit is
* triggered when the error times of SPI0/1 ECC read external RAM are equal or bigger
* than SPI_MEM_S_ECC_ERR_INT_NUM. When SPI_MEM_S_FMEM_ECC_ERR_INT_EN and
* SPI_MEM_S_SMEM_ECC_ERR_INT_EN are set, this bit is triggered when the total error times
* of SPI0/1 ECC read external RAM and flash are equal or bigger than
* SPI_MEM_S_ECC_ERR_INT_NUM. When SPI_MEM_S_FMEM_ECC_ERR_INT_EN and SPI_MEM_S_SMEM_ECC_ERR_INT_EN
* are cleared, this bit will not be triggered.
*/
uint32_t mem_ecc_err_int_raw:1;
/** mem_pms_reject_int_raw : R/WTC/SS; bitpos: [6]; default: 0;
* The raw bit for SPI_MEM_S_PMS_REJECT_INT interrupt. 1: Triggered when SPI1 access is
* rejected. 0: Others.
*/
uint32_t mem_pms_reject_int_raw:1;
/** mem_axi_raddr_err_int_raw : R/WTC/SS; bitpos: [7]; default: 0;
* The raw bit for SPI_MEM_S_AXI_RADDR_ERR_INT interrupt. 1: Triggered when AXI read
* address is invalid by compared to MMU configuration. 0: Others.
*/
uint32_t mem_axi_raddr_err_int_raw:1;
/** mem_axi_wr_flash_err_int_raw : R/WTC/SS; bitpos: [8]; default: 0;
* The raw bit for SPI_MEM_S_AXI_WR_FALSH_ERR_INT interrupt. 1: Triggered when AXI write
* flash request is received. 0: Others.
*/
uint32_t mem_axi_wr_flash_err_int_raw:1;
/** mem_axi_waddr_err_int_raw : R/WTC/SS; bitpos: [9]; default: 0;
* The raw bit for SPI_MEM_S_AXI_WADDR_ERR_INT interrupt. 1: Triggered when AXI write
* address is invalid by compared to MMU configuration. 0: Others.
*/
uint32_t mem_axi_waddr_err_int_raw:1;
uint32_t reserved_10:18;
/** mem_dqs0_afifo_ovf_int_raw : R/WTC/SS; bitpos: [28]; default: 0;
* The raw bit for SPI_MEM_S_DQS0_AFIFO_OVF_INT interrupt. 1: Triggered when the AFIFO
* connected to SPI_DQS1 is overflow.
*/
uint32_t mem_dqs0_afifo_ovf_int_raw:1;
/** mem_dqs1_afifo_ovf_int_raw : R/WTC/SS; bitpos: [29]; default: 0;
* The raw bit for SPI_MEM_S_DQS1_AFIFO_OVF_INT interrupt. 1: Triggered when the AFIFO
* connected to SPI_DQS is overflow.
*/
uint32_t mem_dqs1_afifo_ovf_int_raw:1;
/** mem_bus_fifo1_udf_int_raw : R/WTC/SS; bitpos: [30]; default: 0;
* The raw bit for SPI_MEM_S_BUS_FIFO1_UDF_INT interrupt. 1: Triggered when BUS1 FIFO is
* underflow.
*/
uint32_t mem_bus_fifo1_udf_int_raw:1;
/** mem_bus_fifo0_udf_int_raw : R/WTC/SS; bitpos: [31]; default: 0;
* The raw bit for SPI_MEM_S_BUS_FIFO0_UDF_INT interrupt. 1: Triggered when BUS0 FIFO is
* underflow.
*/
uint32_t mem_bus_fifo0_udf_int_raw:1;
};
uint32_t val;
} spi_mem_s_int_raw_reg_t;
/** Type of mem_int_st register
* SPI0 interrupt status register
*/
typedef union {
struct {
uint32_t reserved_0:3;
/** mem_slv_st_end_int_st : RO; bitpos: [3]; default: 0;
* The status bit for SPI_MEM_S_SLV_ST_END_INT interrupt.
*/
uint32_t mem_slv_st_end_int_st:1;
/** mem_mst_st_end_int_st : RO; bitpos: [4]; default: 0;
* The status bit for SPI_MEM_S_MST_ST_END_INT interrupt.
*/
uint32_t mem_mst_st_end_int_st:1;
/** mem_ecc_err_int_st : RO; bitpos: [5]; default: 0;
* The status bit for SPI_MEM_S_ECC_ERR_INT interrupt.
*/
uint32_t mem_ecc_err_int_st:1;
/** mem_pms_reject_int_st : RO; bitpos: [6]; default: 0;
* The status bit for SPI_MEM_S_PMS_REJECT_INT interrupt.
*/
uint32_t mem_pms_reject_int_st:1;
/** mem_axi_raddr_err_int_st : RO; bitpos: [7]; default: 0;
* The enable bit for SPI_MEM_S_AXI_RADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_raddr_err_int_st:1;
/** mem_axi_wr_flash_err_int_st : RO; bitpos: [8]; default: 0;
* The enable bit for SPI_MEM_S_AXI_WR_FALSH_ERR_INT interrupt.
*/
uint32_t mem_axi_wr_flash_err_int_st:1;
/** mem_axi_waddr_err_int_st : RO; bitpos: [9]; default: 0;
* The enable bit for SPI_MEM_S_AXI_WADDR_ERR_INT interrupt.
*/
uint32_t mem_axi_waddr_err_int_st:1;
uint32_t reserved_10:18;
/** mem_dqs0_afifo_ovf_int_st : RO; bitpos: [28]; default: 0;
* The status bit for SPI_MEM_S_DQS0_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs0_afifo_ovf_int_st:1;
/** mem_dqs1_afifo_ovf_int_st : RO; bitpos: [29]; default: 0;
* The status bit for SPI_MEM_S_DQS1_AFIFO_OVF_INT interrupt.
*/
uint32_t mem_dqs1_afifo_ovf_int_st:1;
/** mem_bus_fifo1_udf_int_st : RO; bitpos: [30]; default: 0;
* The status bit for SPI_MEM_S_BUS_FIFO1_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo1_udf_int_st:1;
/** mem_bus_fifo0_udf_int_st : RO; bitpos: [31]; default: 0;
* The status bit for SPI_MEM_S_BUS_FIFO0_UDF_INT interrupt.
*/
uint32_t mem_bus_fifo0_udf_int_st:1;
};
uint32_t val;
} spi_mem_s_int_st_reg_t;
/** Group: PMS control and configuration registers */
/** Type of fmem_pmsn_attr register
* MSPI flash PMS section $n attribute register
*/
typedef union {
struct {
/** fmem_pms_rd_attr : R/W; bitpos: [0]; default: 1;
* 1: SPI1 flash PMS section $n read accessible. 0: Not allowed.
*/
uint32_t fmem_pms_rd_attr:1;
/** fmem_pms_wr_attr : R/W; bitpos: [1]; default: 1;
* 1: SPI1 flash PMS section $n write accessible. 0: Not allowed.
*/
uint32_t fmem_pms_wr_attr:1;
/** fmem_pms_ecc : R/W; bitpos: [2]; default: 0;
* SPI1 flash PMS section $n ECC mode, 1: enable ECC mode. 0: Disable it. The flash
* PMS section $n is configured by registers SPI_MEM_S_FMEM_PMS$n_ADDR_REG and
* SPI_MEM_S_FMEM_PMS$n_SIZE_REG.
*/
uint32_t fmem_pms_ecc:1;
uint32_t reserved_3:29;
};
uint32_t val;
} spi_mem_s_fmem_pmsn_attr_reg_t;
/** Type of fmem_pmsn_addr register
* SPI1 flash PMS section $n start address register
*/
typedef union {
struct {
/** fmem_pms_addr_s : R/W; bitpos: [26:0]; default: 0;
* SPI1 flash PMS section $n start address value
*/
uint32_t fmem_pms_addr_s:27;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_fmem_pmsn_addr_reg_t;
/** Type of fmem_pmsn_size register
* SPI1 flash PMS section $n start address register
*/
typedef union {
struct {
/** fmem_pms_size : R/W; bitpos: [14:0]; default: 4096;
* SPI1 flash PMS section $n address region is (SPI_MEM_S_FMEM_PMS$n_ADDR_S,
* SPI_MEM_S_FMEM_PMS$n_ADDR_S + SPI_MEM_S_FMEM_PMS$n_SIZE)
*/
uint32_t fmem_pms_size:15;
uint32_t reserved_15:17;
};
uint32_t val;
} spi_mem_s_fmem_pmsn_size_reg_t;
/** Type of smem_pmsn_attr register
* SPI1 flash PMS section $n start address register
*/
typedef union {
struct {
/** smem_pms_rd_attr : R/W; bitpos: [0]; default: 1;
* 1: SPI1 external RAM PMS section $n read accessible. 0: Not allowed.
*/
uint32_t smem_pms_rd_attr:1;
/** smem_pms_wr_attr : R/W; bitpos: [1]; default: 1;
* 1: SPI1 external RAM PMS section $n write accessible. 0: Not allowed.
*/
uint32_t smem_pms_wr_attr:1;
/** smem_pms_ecc : R/W; bitpos: [2]; default: 0;
* SPI1 external RAM PMS section $n ECC mode, 1: enable ECC mode. 0: Disable it. The
* external RAM PMS section $n is configured by registers SPI_MEM_S_SMEM_PMS$n_ADDR_REG and
* SPI_MEM_S_SMEM_PMS$n_SIZE_REG.
*/
uint32_t smem_pms_ecc:1;
uint32_t reserved_3:29;
};
uint32_t val;
} spi_mem_s_smem_pmsn_attr_reg_t;
/** Type of smem_pmsn_addr register
* SPI1 external RAM PMS section $n start address register
*/
typedef union {
struct {
/** smem_pms_addr_s : R/W; bitpos: [26:0]; default: 0;
* SPI1 external RAM PMS section $n start address value
*/
uint32_t smem_pms_addr_s:27;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_smem_pmsn_addr_reg_t;
/** Type of smem_pmsn_size register
* SPI1 external RAM PMS section $n start address register
*/
typedef union {
struct {
/** smem_pms_size : R/W; bitpos: [14:0]; default: 4096;
* SPI1 external RAM PMS section $n address region is (SPI_MEM_S_SMEM_PMS$n_ADDR_S,
* SPI_MEM_S_SMEM_PMS$n_ADDR_S + SPI_MEM_S_SMEM_PMS$n_SIZE)
*/
uint32_t smem_pms_size:15;
uint32_t reserved_15:17;
};
uint32_t val;
} spi_mem_s_smem_pmsn_size_reg_t;
/** Type of mem_pms_reject register
* SPI1 access reject register
*/
typedef union {
struct {
/** mem_reject_addr : R/SS/WTC; bitpos: [26:0]; default: 0;
* This bits show the first SPI1 access error address. It is cleared by when
* SPI_MEM_S_PMS_REJECT_INT_CLR bit is set.
*/
uint32_t mem_reject_addr:27;
/** mem_pm_en : R/W; bitpos: [27]; default: 0;
* Set this bit to enable SPI0/1 transfer permission control function.
*/
uint32_t mem_pm_en:1;
/** mem_pms_ld : R/SS/WTC; bitpos: [28]; default: 0;
* 1: SPI1 write access error. 0: No write access error. It is cleared by when
* SPI_MEM_S_PMS_REJECT_INT_CLR bit is set.
*/
uint32_t mem_pms_ld:1;
/** mem_pms_st : R/SS/WTC; bitpos: [29]; default: 0;
* 1: SPI1 read access error. 0: No read access error. It is cleared by when
* SPI_MEM_S_PMS_REJECT_INT_CLR bit is set.
*/
uint32_t mem_pms_st:1;
/** mem_pms_multi_hit : R/SS/WTC; bitpos: [30]; default: 0;
* 1: SPI1 access is rejected because of address miss. 0: No address miss error. It is
* cleared by when SPI_MEM_S_PMS_REJECT_INT_CLR bit is set.
*/
uint32_t mem_pms_multi_hit:1;
/** mem_pms_ivd : R/SS/WTC; bitpos: [31]; default: 0;
* 1: SPI1 access is rejected because of address multi-hit. 0: No address multi-hit
* error. It is cleared by when SPI_MEM_S_PMS_REJECT_INT_CLR bit is set.
*/
uint32_t mem_pms_ivd:1;
};
uint32_t val;
} spi_mem_s_pms_reject_reg_t;
/** Group: MSPI ECC registers */
/** Type of mem_ecc_ctrl register
* MSPI ECC control register
*/
typedef union {
struct {
uint32_t reserved_0:5;
/** mem_ecc_err_cnt : R/SS/WTC; bitpos: [10:5]; default: 0;
* This bits show the error times of MSPI ECC read. It is cleared by when
* SPI_MEM_S_ECC_ERR_INT_CLR bit is set.
*/
uint32_t mem_ecc_err_cnt:6;
/** fmem_ecc_err_int_num : R/W; bitpos: [16:11]; default: 10;
* Set the error times of MSPI ECC read to generate MSPI SPI_MEM_S_ECC_ERR_INT interrupt.
*/
uint32_t fmem_ecc_err_int_num:6;
/** fmem_ecc_err_int_en : R/W; bitpos: [17]; default: 0;
* Set this bit to calculate the error times of MSPI ECC read when accesses to flash.
*/
uint32_t fmem_ecc_err_int_en:1;
/** fmem_page_size : R/W; bitpos: [19:18]; default: 0;
* Set the page size of the flash accessed by MSPI. 0: 256 bytes. 1: 512 bytes. 2:
* 1024 bytes. 3: 2048 bytes.
*/
uint32_t fmem_page_size:2;
/** fmem_ecc_addr_en : R/W; bitpos: [20]; default: 0;
* Set this bit to enable MSPI ECC address conversion, no matter MSPI accesses to the
* ECC region or non-ECC region of flash. If there is no ECC region in flash, this bit
* should be 0. Otherwise, this bit should be 1.
*/
uint32_t fmem_ecc_addr_en:1;
/** mem_usr_ecc_addr_en : R/W; bitpos: [21]; default: 0;
* Set this bit to enable ECC address convert in SPI0/1 USR_CMD transfer.
*/
uint32_t mem_usr_ecc_addr_en:1;
uint32_t reserved_22:2;
/** mem_ecc_continue_record_err_en : R/W; bitpos: [24]; default: 1;
* 1: The error information in SPI_MEM_S_ECC_ERR_BITS and SPI_MEM_S_ECC_ERR_ADDR is
* updated when there is an ECC error. 0: SPI_MEM_S_ECC_ERR_BITS and
* SPI_MEM_S_ECC_ERR_ADDR record the first ECC error information.
*/
uint32_t mem_ecc_continue_record_err_en:1;
/** mem_ecc_err_bits : R/SS/WTC; bitpos: [31:25]; default: 0;
* Records the first ECC error bit number in the 16 bytes(From 0~127, corresponding to
* byte 0 bit 0 to byte 15 bit 7)
*/
uint32_t mem_ecc_err_bits:7;
};
uint32_t val;
} spi_mem_s_ecc_ctrl_reg_t;
/** Type of mem_ecc_err_addr register
* MSPI ECC error address register
*/
typedef union {
struct {
/** mem_ecc_err_addr : R/SS/WTC; bitpos: [26:0]; default: 0;
* This bits show the first MSPI ECC error address. It is cleared by when
* SPI_MEM_S_ECC_ERR_INT_CLR bit is set.
*/
uint32_t mem_ecc_err_addr:27;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_ecc_err_addr_reg_t;
/** Type of smem_ecc_ctrl register
* MSPI ECC control register
*/
typedef union {
struct {
uint32_t reserved_0:17;
/** smem_ecc_err_int_en : R/W; bitpos: [17]; default: 0;
* Set this bit to calculate the error times of MSPI ECC read when accesses to
* external RAM.
*/
uint32_t smem_ecc_err_int_en:1;
/** smem_page_size : R/W; bitpos: [19:18]; default: 2;
* Set the page size of the external RAM accessed by MSPI. 0: 256 bytes. 1: 512 bytes.
* 2: 1024 bytes. 3: 2048 bytes.
*/
uint32_t smem_page_size:2;
/** smem_ecc_addr_en : R/W; bitpos: [20]; default: 0;
* Set this bit to enable MSPI ECC address conversion, no matter MSPI accesses to the
* ECC region or non-ECC region of external RAM. If there is no ECC region in external
* RAM, this bit should be 0. Otherwise, this bit should be 1.
*/
uint32_t smem_ecc_addr_en:1;
uint32_t reserved_21:11;
};
uint32_t val;
} spi_mem_s_smem_ecc_ctrl_reg_t;
/** Group: Status and state control registers */
/** Type of smem_axi_addr_ctrl register
* SPI0 AXI address control register
*/
typedef union {
struct {
uint32_t reserved_0:26;
/** mem_all_fifo_empty : RO; bitpos: [26]; default: 1;
* The empty status of all AFIFO and SYNC_FIFO in MSPI module. 1: All AXI transfers
* and SPI0 transfers are done. 0: Others.
*/
uint32_t mem_all_fifo_empty:1;
/** rdata_afifo_rempty : RO; bitpos: [27]; default: 1;
* 1: RDATA_AFIFO is empty. 0: At least one AXI read transfer is pending.
*/
uint32_t rdata_afifo_rempty:1;
/** raddr_afifo_rempty : RO; bitpos: [28]; default: 1;
* 1: AXI_RADDR_CTL_AFIFO is empty. 0: At least one AXI read transfer is pending.
*/
uint32_t raddr_afifo_rempty:1;
/** wdata_afifo_rempty : RO; bitpos: [29]; default: 1;
* 1: WDATA_AFIFO is empty. 0: At least one AXI write transfer is pending.
*/
uint32_t wdata_afifo_rempty:1;
/** wblen_afifo_rempty : RO; bitpos: [30]; default: 1;
* 1: WBLEN_AFIFO is empty. 0: At least one AXI write transfer is pending.
*/
uint32_t wblen_afifo_rempty:1;
/** all_axi_trans_afifo_empty : RO; bitpos: [31]; default: 1;
* This bit is set when WADDR_AFIFO, WBLEN_AFIFO, WDATA_AFIFO, AXI_RADDR_CTL_AFIFO and
* RDATA_AFIFO are empty and spi0_mst_st is IDLE.
*/
uint32_t all_axi_trans_afifo_empty:1;
};
uint32_t val;
} spi_mem_s_smem_axi_addr_ctrl_reg_t;
/** Type of mem_axi_err_resp_en register
* SPI0 AXI error response enable register
*/
typedef union {
struct {
/** mem_aw_resp_en_mmu_vld : R/W; bitpos: [0]; default: 0;
* Set this bit to enable AXI response function for mmu valid err in axi write trans.
*/
uint32_t mem_aw_resp_en_mmu_vld:1;
/** mem_aw_resp_en_mmu_gid : R/W; bitpos: [1]; default: 0;
* Set this bit to enable AXI response function for mmu gid err in axi write trans.
*/
uint32_t mem_aw_resp_en_mmu_gid:1;
/** mem_aw_resp_en_axi_size : R/W; bitpos: [2]; default: 0;
* Set this bit to enable AXI response function for axi size err in axi write trans.
*/
uint32_t mem_aw_resp_en_axi_size:1;
/** mem_aw_resp_en_axi_flash : R/W; bitpos: [3]; default: 0;
* Set this bit to enable AXI response function for axi flash err in axi write trans.
*/
uint32_t mem_aw_resp_en_axi_flash:1;
/** mem_aw_resp_en_mmu_ecc : R/W; bitpos: [4]; default: 0;
* Set this bit to enable AXI response function for mmu ecc err in axi write trans.
*/
uint32_t mem_aw_resp_en_mmu_ecc:1;
/** mem_aw_resp_en_mmu_sens : R/W; bitpos: [5]; default: 0;
* Set this bit to enable AXI response function for mmu sens in err axi write trans.
*/
uint32_t mem_aw_resp_en_mmu_sens:1;
/** mem_aw_resp_en_axi_wstrb : R/W; bitpos: [6]; default: 0;
* Set this bit to enable AXI response function for axi wstrb err in axi write trans.
*/
uint32_t mem_aw_resp_en_axi_wstrb:1;
/** mem_ar_resp_en_mmu_vld : R/W; bitpos: [7]; default: 0;
* Set this bit to enable AXI response function for mmu valid err in axi read trans.
*/
uint32_t mem_ar_resp_en_mmu_vld:1;
/** mem_ar_resp_en_mmu_gid : R/W; bitpos: [8]; default: 0;
* Set this bit to enable AXI response function for mmu gid err in axi read trans.
*/
uint32_t mem_ar_resp_en_mmu_gid:1;
/** mem_ar_resp_en_mmu_ecc : R/W; bitpos: [9]; default: 0;
* Set this bit to enable AXI response function for mmu ecc err in axi read trans.
*/
uint32_t mem_ar_resp_en_mmu_ecc:1;
/** mem_ar_resp_en_mmu_sens : R/W; bitpos: [10]; default: 0;
* Set this bit to enable AXI response function for mmu sensitive err in axi read
* trans.
*/
uint32_t mem_ar_resp_en_mmu_sens:1;
/** mem_ar_resp_en_axi_size : R/W; bitpos: [11]; default: 0;
* Set this bit to enable AXI response function for axi size err in axi read trans.
*/
uint32_t mem_ar_resp_en_axi_size:1;
uint32_t reserved_12:20;
};
uint32_t val;
} spi_mem_s_axi_err_resp_en_reg_t;
/** Group: Flash timing registers */
/** Type of mem_timing_cali register
* SPI0 flash timing calibration register
*/
typedef union {
struct {
/** mem_timing_clk_ena : R/W; bitpos: [0]; default: 1;
* The bit is used to enable timing adjust clock for all reading operations.
*/
uint32_t mem_timing_clk_ena:1;
/** mem_timing_cali : R/W; bitpos: [1]; default: 0;
* The bit is used to enable timing auto-calibration for all reading operations.
*/
uint32_t mem_timing_cali:1;
/** mem_extra_dummy_cyclelen : R/W; bitpos: [4:2]; default: 0;
* add extra dummy spi clock cycle length for spi clock calibration.
*/
uint32_t mem_extra_dummy_cyclelen:3;
/** mem_dll_timing_cali : R/W; bitpos: [5]; default: 0;
* Set this bit to enable DLL for timing calibration in DDR mode when accessed to
* flash.
*/
uint32_t mem_dll_timing_cali:1;
/** mem_timing_cali_update : WT; bitpos: [6]; default: 0;
* Set this bit to update delay mode, delay num and extra dummy in MSPI.
*/
uint32_t mem_timing_cali_update:1;
uint32_t reserved_7:25;
};
uint32_t val;
} spi_mem_s_timing_cali_reg_t;
/** Type of mem_din_mode register
* MSPI flash input timing delay mode control register
*/
typedef union {
struct {
/** mem_din0_mode : R/W; bitpos: [2:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t mem_din0_mode:3;
/** mem_din1_mode : R/W; bitpos: [5:3]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t mem_din1_mode:3;
/** mem_din2_mode : R/W; bitpos: [8:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t mem_din2_mode:3;
/** mem_din3_mode : R/W; bitpos: [11:9]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t mem_din3_mode:3;
/** mem_din4_mode : R/W; bitpos: [14:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the spi_clk
*/
uint32_t mem_din4_mode:3;
/** mem_din5_mode : R/W; bitpos: [17:15]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the spi_clk
*/
uint32_t mem_din5_mode:3;
/** mem_din6_mode : R/W; bitpos: [20:18]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the spi_clk
*/
uint32_t mem_din6_mode:3;
/** mem_din7_mode : R/W; bitpos: [23:21]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the spi_clk
*/
uint32_t mem_din7_mode:3;
/** mem_dins_mode : R/W; bitpos: [26:24]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the spi_clk
*/
uint32_t mem_dins_mode:3;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_din_mode_reg_t;
/** Type of mem_din_num register
* MSPI flash input timing delay number control register
*/
typedef union {
struct {
/** mem_din0_num : R/W; bitpos: [1:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din0_num:2;
/** mem_din1_num : R/W; bitpos: [3:2]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din1_num:2;
/** mem_din2_num : R/W; bitpos: [5:4]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din2_num:2;
/** mem_din3_num : R/W; bitpos: [7:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din3_num:2;
/** mem_din4_num : R/W; bitpos: [9:8]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din4_num:2;
/** mem_din5_num : R/W; bitpos: [11:10]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din5_num:2;
/** mem_din6_num : R/W; bitpos: [13:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din6_num:2;
/** mem_din7_num : R/W; bitpos: [15:14]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_din7_num:2;
/** mem_dins_num : R/W; bitpos: [17:16]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t mem_dins_num:2;
uint32_t reserved_18:14;
};
uint32_t val;
} spi_mem_s_din_num_reg_t;
/** Type of mem_dout_mode register
* MSPI flash output timing adjustment control register
*/
typedef union {
struct {
/** mem_dout0_mode : R/W; bitpos: [0]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t mem_dout0_mode:1;
/** mem_dout1_mode : R/W; bitpos: [1]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t mem_dout1_mode:1;
/** mem_dout2_mode : R/W; bitpos: [2]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t mem_dout2_mode:1;
/** mem_dout3_mode : R/W; bitpos: [3]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t mem_dout3_mode:1;
/** mem_dout4_mode : R/W; bitpos: [4]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the spi_clk
*/
uint32_t mem_dout4_mode:1;
/** mem_dout5_mode : R/W; bitpos: [5]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the spi_clk
*/
uint32_t mem_dout5_mode:1;
/** mem_dout6_mode : R/W; bitpos: [6]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the spi_clk
*/
uint32_t mem_dout6_mode:1;
/** mem_dout7_mode : R/W; bitpos: [7]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the spi_clk
*/
uint32_t mem_dout7_mode:1;
/** mem_douts_mode : R/W; bitpos: [8]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the spi_clk
*/
uint32_t mem_douts_mode:1;
uint32_t reserved_9:23;
};
uint32_t val;
} spi_mem_s_dout_mode_reg_t;
/** Group: External RAM timing registers */
/** Type of smem_timing_cali register
* MSPI external RAM timing calibration register
*/
typedef union {
struct {
/** smem_timing_clk_ena : R/W; bitpos: [0]; default: 1;
* For sram, the bit is used to enable timing adjust clock for all reading operations.
*/
uint32_t smem_timing_clk_ena:1;
/** smem_timing_cali : R/W; bitpos: [1]; default: 0;
* For sram, the bit is used to enable timing auto-calibration for all reading
* operations.
*/
uint32_t smem_timing_cali:1;
/** smem_extra_dummy_cyclelen : R/W; bitpos: [4:2]; default: 0;
* For sram, add extra dummy spi clock cycle length for spi clock calibration.
*/
uint32_t smem_extra_dummy_cyclelen:3;
/** smem_dll_timing_cali : R/W; bitpos: [5]; default: 0;
* Set this bit to enable DLL for timing calibration in DDR mode when accessed to
* EXT_RAM.
*/
uint32_t smem_dll_timing_cali:1;
uint32_t reserved_6:26;
};
uint32_t val;
} spi_mem_s_smem_timing_cali_reg_t;
/** Type of smem_din_mode register
* MSPI external RAM input timing delay mode control register
*/
typedef union {
struct {
/** smem_din0_mode : R/W; bitpos: [2:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din0_mode:3;
/** smem_din1_mode : R/W; bitpos: [5:3]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din1_mode:3;
/** smem_din2_mode : R/W; bitpos: [8:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din2_mode:3;
/** smem_din3_mode : R/W; bitpos: [11:9]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din3_mode:3;
/** smem_din4_mode : R/W; bitpos: [14:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din4_mode:3;
/** smem_din5_mode : R/W; bitpos: [17:15]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din5_mode:3;
/** smem_din6_mode : R/W; bitpos: [20:18]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din6_mode:3;
/** smem_din7_mode : R/W; bitpos: [23:21]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din7_mode:3;
/** smem_dins_mode : R/W; bitpos: [26:24]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_dins_mode:3;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_smem_din_mode_reg_t;
/** Type of smem_din_num register
* MSPI external RAM input timing delay number control register
*/
typedef union {
struct {
/** smem_din0_num : R/W; bitpos: [1:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din0_num:2;
/** smem_din1_num : R/W; bitpos: [3:2]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din1_num:2;
/** smem_din2_num : R/W; bitpos: [5:4]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din2_num:2;
/** smem_din3_num : R/W; bitpos: [7:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din3_num:2;
/** smem_din4_num : R/W; bitpos: [9:8]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din4_num:2;
/** smem_din5_num : R/W; bitpos: [11:10]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din5_num:2;
/** smem_din6_num : R/W; bitpos: [13:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din6_num:2;
/** smem_din7_num : R/W; bitpos: [15:14]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din7_num:2;
/** smem_dins_num : R/W; bitpos: [17:16]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_dins_num:2;
uint32_t reserved_18:14;
};
uint32_t val;
} spi_mem_s_smem_din_num_reg_t;
/** Type of smem_dout_mode register
* MSPI external RAM output timing adjustment control register
*/
typedef union {
struct {
/** smem_dout0_mode : R/W; bitpos: [0]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout0_mode:1;
/** smem_dout1_mode : R/W; bitpos: [1]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout1_mode:1;
/** smem_dout2_mode : R/W; bitpos: [2]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout2_mode:1;
/** smem_dout3_mode : R/W; bitpos: [3]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout3_mode:1;
/** smem_dout4_mode : R/W; bitpos: [4]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout4_mode:1;
/** smem_dout5_mode : R/W; bitpos: [5]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout5_mode:1;
/** smem_dout6_mode : R/W; bitpos: [6]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout6_mode:1;
/** smem_dout7_mode : R/W; bitpos: [7]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout7_mode:1;
/** smem_douts_mode : R/W; bitpos: [8]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_douts_mode:1;
uint32_t reserved_9:23;
};
uint32_t val;
} spi_mem_s_smem_dout_mode_reg_t;
/** Type of smem_din_hex_mode register
* MSPI 16x external RAM input timing delay mode control register
*/
typedef union {
struct {
/** smem_din08_mode : R/W; bitpos: [2:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din08_mode:3;
/** smem_din09_mode : R/W; bitpos: [5:3]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din09_mode:3;
/** smem_din10_mode : R/W; bitpos: [8:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din10_mode:3;
/** smem_din11_mode : R/W; bitpos: [11:9]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din11_mode:3;
/** smem_din12_mode : R/W; bitpos: [14:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din12_mode:3;
/** smem_din13_mode : R/W; bitpos: [17:15]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din13_mode:3;
/** smem_din14_mode : R/W; bitpos: [20:18]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din14_mode:3;
/** smem_din15_mode : R/W; bitpos: [23:21]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_din15_mode:3;
/** smem_dins_hex_mode : R/W; bitpos: [26:24]; default: 0;
* the input signals are delayed by system clock cycles, 0: input without delayed, 1:
* input with the posedge of clk_apb,2 input with the negedge of clk_apb, 3: input
* with the posedge of clk_160, 4 input with the negedge of clk_160, 5: input with the
* spi_clk high edge, 6: input with the spi_clk low edge
*/
uint32_t smem_dins_hex_mode:3;
uint32_t reserved_27:5;
};
uint32_t val;
} spi_mem_s_smem_din_hex_mode_reg_t;
/** Type of smem_din_hex_num register
* MSPI 16x external RAM input timing delay number control register
*/
typedef union {
struct {
/** smem_din08_num : R/W; bitpos: [1:0]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din08_num:2;
/** smem_din09_num : R/W; bitpos: [3:2]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din09_num:2;
/** smem_din10_num : R/W; bitpos: [5:4]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din10_num:2;
/** smem_din11_num : R/W; bitpos: [7:6]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din11_num:2;
/** smem_din12_num : R/W; bitpos: [9:8]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din12_num:2;
/** smem_din13_num : R/W; bitpos: [11:10]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din13_num:2;
/** smem_din14_num : R/W; bitpos: [13:12]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din14_num:2;
/** smem_din15_num : R/W; bitpos: [15:14]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_din15_num:2;
/** smem_dins_hex_num : R/W; bitpos: [17:16]; default: 0;
* the input signals are delayed by system clock cycles, 0: delayed by 1 cycle, 1:
* delayed by 2 cycles,...
*/
uint32_t smem_dins_hex_num:2;
uint32_t reserved_18:14;
};
uint32_t val;
} spi_mem_s_smem_din_hex_num_reg_t;
/** Type of smem_dout_hex_mode register
* MSPI 16x external RAM output timing adjustment control register
*/
typedef union {
struct {
/** smem_dout08_mode : R/W; bitpos: [0]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout08_mode:1;
/** smem_dout09_mode : R/W; bitpos: [1]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout09_mode:1;
/** smem_dout10_mode : R/W; bitpos: [2]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout10_mode:1;
/** smem_dout11_mode : R/W; bitpos: [3]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout11_mode:1;
/** smem_dout12_mode : R/W; bitpos: [4]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout12_mode:1;
/** smem_dout13_mode : R/W; bitpos: [5]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout13_mode:1;
/** smem_dout14_mode : R/W; bitpos: [6]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout14_mode:1;
/** smem_dout15_mode : R/W; bitpos: [7]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_dout15_mode:1;
/** smem_douts_hex_mode : R/W; bitpos: [8]; default: 0;
* the output signals are delayed by system clock cycles, 0: output without delayed,
* 1: output with the posedge of clk_apb,2 output with the negedge of clk_apb, 3:
* output with the posedge of clk_160,4 output with the negedge of clk_160,5: output
* with the spi_clk high edge ,6: output with the spi_clk low edge
*/
uint32_t smem_douts_hex_mode:1;
uint32_t reserved_9:23;
};
uint32_t val;
} spi_mem_s_smem_dout_hex_mode_reg_t;
/** Group: Manual Encryption plaintext Memory */
/** Type of mem_xts_plain_base register
* The base address of the memory that stores plaintext in Manual Encryption
*/
typedef union {
struct {
/** xts_plain : R/W; bitpos: [31:0]; default: 0;
* This field is only used to generate include file in c case. This field is useless.
* Please do not use this field.
*/
uint32_t xts_plain:32;
};
uint32_t val;
} spi_mem_s_xts_plain_base_reg_t;
/** Group: Manual Encryption configuration registers */
/** Type of mem_xts_linesize register
* Manual Encryption Line-Size register
*/
typedef union {
struct {
/** xts_linesize : R/W; bitpos: [1:0]; default: 0;
* This bits stores the line-size parameter which will be used in manual encryption
* calculation. It decides how many bytes will be encrypted one time. 0: 16-bytes, 1:
* 32-bytes, 2: 64-bytes, 3:reserved.
*/
uint32_t xts_linesize:2;
uint32_t reserved_2:30;
};
uint32_t val;
} spi_mem_s_xts_linesize_reg_t;
/** Type of mem_xts_destination register
* Manual Encryption destination register
*/
typedef union {
struct {
/** xts_destination : R/W; bitpos: [0]; default: 0;
* This bit stores the destination parameter which will be used in manual encryption
* calculation. 0: flash(default), 1: psram(reserved). Only default value can be used.
*/
uint32_t xts_destination:1;
uint32_t reserved_1:31;
};
uint32_t val;
} spi_mem_s_xts_destination_reg_t;
/** Type of mem_xts_physical_address register
* Manual Encryption physical address register
*/
typedef union {
struct {
/** xts_physical_address : R/W; bitpos: [25:0]; default: 0;
* This bits stores the physical-address parameter which will be used in manual
* encryption calculation. This value should aligned with byte number decided by
* line-size parameter.
*/
uint32_t xts_physical_address:26;
uint32_t reserved_26:6;
};
uint32_t val;
} spi_mem_s_xts_physical_address_reg_t;
/** Group: Manual Encryption control and status registers */
/** Type of mem_xts_trigger register
* Manual Encryption physical address register
*/
typedef union {
struct {
/** xts_trigger : WT; bitpos: [0]; default: 0;
* Set this bit to trigger the process of manual encryption calculation. This action
* should only be asserted when manual encryption status is 0. After this action,
* manual encryption status becomes 1. After calculation is done, manual encryption
* status becomes 2.
*/
uint32_t xts_trigger:1;
uint32_t reserved_1:31;
};
uint32_t val;
} spi_mem_s_xts_trigger_reg_t;
/** Type of mem_xts_release register
* Manual Encryption physical address register
*/
typedef union {
struct {
/** xts_release : WT; bitpos: [0]; default: 0;
* Set this bit to release encrypted result to mspi. This action should only be
* asserted when manual encryption status is 2. After this action, manual encryption
* status will become 3.
*/
uint32_t xts_release:1;
uint32_t reserved_1:31;
};
uint32_t val;
} spi_mem_s_xts_release_reg_t;
/** Type of mem_xts_destroy register
* Manual Encryption physical address register
*/
typedef union {
struct {
/** xts_destroy : WT; bitpos: [0]; default: 0;
* Set this bit to destroy encrypted result. This action should be asserted only when
* manual encryption status is 3. After this action, manual encryption status will
* become 0.
*/
uint32_t xts_destroy:1;
uint32_t reserved_1:31;
};
uint32_t val;
} spi_mem_s_xts_destroy_reg_t;
/** Type of mem_xts_state register
* Manual Encryption physical address register
*/
typedef union {
struct {
/** xts_state : RO; bitpos: [1:0]; default: 0;
* This bits stores the status of manual encryption. 0: idle, 1: busy of encryption
* calculation, 2: encryption calculation is done but the encrypted result is
* invisible to mspi, 3: the encrypted result is visible to mspi.
*/
uint32_t xts_state:2;
uint32_t reserved_2:30;
};
uint32_t val;
} spi_mem_s_xts_state_reg_t;
/** Group: Manual Encryption version control register */
/** Type of mem_xts_date register
* Manual Encryption version register
*/
typedef union {
struct {
/** xts_date : R/W; bitpos: [29:0]; default: 538972176;
* This bits stores the last modified-time of manual encryption feature.
*/
uint32_t xts_date:30;
uint32_t reserved_30:2;
};
uint32_t val;
} spi_mem_s_xts_date_reg_t;
/** Group: MMU access registers */
/** Type of mem_mmu_item_content register
* MSPI-MMU item content register
*/
typedef union {
struct {
/** mmu_item_content : R/W; bitpos: [31:0]; default: 892;
* MSPI-MMU item content
*/
uint32_t mmu_item_content:32;
};
uint32_t val;
} spi_mem_s_mmu_item_content_reg_t;
/** Type of mem_mmu_item_index register
* MSPI-MMU item index register
*/
typedef union {
struct {
/** mmu_item_index : R/W; bitpos: [31:0]; default: 0;
* MSPI-MMU item index
*/
uint32_t mmu_item_index:32;
};
uint32_t val;
} spi_mem_s_mmu_item_index_reg_t;
/** Group: MMU power control and configuration registers */
/** Type of mem_mmu_power_ctrl register
* MSPI MMU power control register
*/
typedef union {
struct {
/** mmu_mem_force_on : R/W; bitpos: [0]; default: 0;
* Set this bit to enable mmu-memory clock force on
*/
uint32_t mmu_mem_force_on:1;
/** mmu_mem_force_pd : R/W; bitpos: [1]; default: 0;
* Set this bit to force mmu-memory powerdown
*/
uint32_t mmu_mem_force_pd:1;
/** mmu_mem_force_pu : R/W; bitpos: [2]; default: 1;
* Set this bit to force mmu-memory powerup, in this case, the power should also be
* controlled by rtc.
*/
uint32_t mmu_mem_force_pu:1;
uint32_t reserved_3:13;
/** mem_aux_ctrl : R/W; bitpos: [29:16]; default: 4896;
* MMU PSRAM aux control register
*/
uint32_t mem_aux_ctrl:14;
/** mem_rdn_ena : R/W; bitpos: [30]; default: 0;
* ECO register enable bit
*/
uint32_t mem_rdn_ena:1;
/** mem_rdn_result : RO; bitpos: [31]; default: 0;
* MSPI module clock domain and AXI clock domain ECO register result register
*/
uint32_t mem_rdn_result:1;
};
uint32_t val;
} spi_mem_s_mmu_power_ctrl_reg_t;
/** Group: External mem cryption DPA registers */
/** Type of mem_dpa_ctrl register
* SPI memory cryption DPA register
*/
typedef union {
struct {
/** crypt_security_level : R/W; bitpos: [2:0]; default: 7;
* Set the security level of spi mem cryption. 0: Shut off cryption DPA funtion. 1-7:
* The bigger the number is, the more secure the cryption is. (Note that the
* performance of cryption will decrease together with this number increasing)
*/
uint32_t crypt_security_level:3;
/** crypt_calc_d_dpa_en : R/W; bitpos: [3]; default: 1;
* Only available when SPI_CRYPT_SECURITY_LEVEL is not 0. 1: Enable DPA in the
* calculation that using key 1 or key 2. 0: Enable DPA only in the calculation that
* using key 1.
*/
uint32_t crypt_calc_d_dpa_en:1;
/** crypt_dpa_select_register : R/W; bitpos: [4]; default: 0;
* 1: MSPI XTS DPA clock gate is controlled by SPI_CRYPT_CALC_D_DPA_EN and
* SPI_CRYPT_SECURITY_LEVEL. 0: Controlled by efuse bits.
*/
uint32_t crypt_dpa_select_register:1;
uint32_t reserved_5:27;
};
uint32_t val;
} spi_mem_s_dpa_ctrl_reg_t;
/** Group: ECO registers */
/** Type of mem_registerrnd_eco_high register
* MSPI ECO high register
*/
typedef union {
struct {
/** mem_registerrnd_eco_high : R/W; bitpos: [31:0]; default: 892;
* ECO high register
*/
uint32_t mem_registerrnd_eco_high:32;
};
uint32_t val;
} spi_mem_s_registerrnd_eco_high_reg_t;
/** Type of mem_registerrnd_eco_low register
* MSPI ECO low register
*/
typedef union {
struct {
/** mem_registerrnd_eco_low : R/W; bitpos: [31:0]; default: 892;
* ECO low register
*/
uint32_t mem_registerrnd_eco_low:32;
};
uint32_t val;
} spi_mem_s_registerrnd_eco_low_reg_t;
/** Group: Version control register */
/** Type of mem_date register
* SPI0 version control register
*/
typedef union {
struct {
/** mem_date : R/W; bitpos: [27:0]; default: 36712704;
* SPI0 register version.
*/
uint32_t mem_date:28;
uint32_t reserved_28:4;
};
uint32_t val;
} spi_mem_s_date_reg_t;
typedef struct spi_mem_s_dev_t {
volatile spi_mem_s_cmd_reg_t mem_cmd;
uint32_t reserved_004;
volatile spi_mem_s_ctrl_reg_t mem_ctrl;
volatile spi_mem_s_ctrl1_reg_t mem_ctrl1;
volatile spi_mem_s_ctrl2_reg_t mem_ctrl2;
volatile spi_mem_s_clock_reg_t mem_clock;
volatile spi_mem_s_user_reg_t mem_user;
volatile spi_mem_s_user1_reg_t mem_user1;
volatile spi_mem_s_user2_reg_t mem_user2;
uint32_t reserved_024[2];
volatile spi_mem_s_rd_status_reg_t mem_rd_status;
uint32_t reserved_030;
volatile spi_mem_s_misc_reg_t mem_misc;
uint32_t reserved_038;
volatile spi_mem_s_cache_fctrl_reg_t mem_cache_fctrl;
volatile spi_mem_s_cache_sctrl_reg_t mem_cache_sctrl;
volatile spi_mem_s_sram_cmd_reg_t mem_sram_cmd;
volatile spi_mem_s_sram_drd_cmd_reg_t mem_sram_drd_cmd;
volatile spi_mem_s_sram_dwr_cmd_reg_t mem_sram_dwr_cmd;
volatile spi_mem_s_sram_clk_reg_t mem_sram_clk;
volatile spi_mem_s_fsm_reg_t mem_fsm;
uint32_t reserved_058[26];
volatile spi_mem_s_int_ena_reg_t mem_int_ena;
volatile spi_mem_s_int_clr_reg_t mem_int_clr;
volatile spi_mem_s_int_raw_reg_t mem_int_raw;
volatile spi_mem_s_int_st_reg_t mem_int_st;
uint32_t reserved_0d0;
volatile spi_mem_s_ddr_reg_t mem_ddr;
volatile spi_mem_s_smem_ddr_reg_t smem_ddr;
uint32_t reserved_0dc[9];
volatile spi_mem_s_fmem_pmsn_attr_reg_t fmem_pmsn_attr[4];
volatile spi_mem_s_fmem_pmsn_addr_reg_t fmem_pmsn_addr[4];
volatile spi_mem_s_fmem_pmsn_size_reg_t fmem_pmsn_size[4];
volatile spi_mem_s_smem_pmsn_attr_reg_t smem_pmsn_attr[4];
volatile spi_mem_s_smem_pmsn_addr_reg_t smem_pmsn_addr[4];
volatile spi_mem_s_smem_pmsn_size_reg_t smem_pmsn_size[4];
uint32_t reserved_160;
volatile spi_mem_s_pms_reject_reg_t mem_pms_reject;
volatile spi_mem_s_ecc_ctrl_reg_t mem_ecc_ctrl;
volatile spi_mem_s_ecc_err_addr_reg_t mem_ecc_err_addr;
volatile spi_mem_s_axi_err_addr_reg_t mem_axi_err_addr;
volatile spi_mem_s_smem_ecc_ctrl_reg_t smem_ecc_ctrl;
volatile spi_mem_s_smem_axi_addr_ctrl_reg_t smem_axi_addr_ctrl;
volatile spi_mem_s_axi_err_resp_en_reg_t mem_axi_err_resp_en;
volatile spi_mem_s_timing_cali_reg_t mem_timing_cali;
volatile spi_mem_s_din_mode_reg_t mem_din_mode;
volatile spi_mem_s_din_num_reg_t mem_din_num;
volatile spi_mem_s_dout_mode_reg_t mem_dout_mode;
volatile spi_mem_s_smem_timing_cali_reg_t smem_timing_cali;
volatile spi_mem_s_smem_din_mode_reg_t smem_din_mode;
volatile spi_mem_s_smem_din_num_reg_t smem_din_num;
volatile spi_mem_s_smem_dout_mode_reg_t smem_dout_mode;
volatile spi_mem_s_smem_ac_reg_t smem_ac;
volatile spi_mem_s_smem_din_hex_mode_reg_t smem_din_hex_mode;
volatile spi_mem_s_smem_din_hex_num_reg_t smem_din_hex_num;
volatile spi_mem_s_smem_dout_hex_mode_reg_t smem_dout_hex_mode;
uint32_t reserved_1b0[20];
volatile spi_mem_s_clock_gate_reg_t mem_clock_gate;
uint32_t reserved_204[63];
volatile spi_mem_s_xts_plain_base_reg_t mem_xts_plain_base;
uint32_t reserved_304[15];
volatile spi_mem_s_xts_linesize_reg_t mem_xts_linesize;
volatile spi_mem_s_xts_destination_reg_t mem_xts_destination;
volatile spi_mem_s_xts_physical_address_reg_t mem_xts_physical_address;
volatile spi_mem_s_xts_trigger_reg_t mem_xts_trigger;
volatile spi_mem_s_xts_release_reg_t mem_xts_release;
volatile spi_mem_s_xts_destroy_reg_t mem_xts_destroy;
volatile spi_mem_s_xts_state_reg_t mem_xts_state;
volatile spi_mem_s_xts_date_reg_t mem_xts_date;
uint32_t reserved_360[7];
volatile spi_mem_s_mmu_item_content_reg_t mem_mmu_item_content;
volatile spi_mem_s_mmu_item_index_reg_t mem_mmu_item_index;
volatile spi_mem_s_mmu_power_ctrl_reg_t mem_mmu_power_ctrl;
volatile spi_mem_s_dpa_ctrl_reg_t mem_dpa_ctrl;
uint32_t reserved_38c[25];
volatile spi_mem_s_registerrnd_eco_high_reg_t mem_registerrnd_eco_high;
volatile spi_mem_s_registerrnd_eco_low_reg_t mem_registerrnd_eco_low;
uint32_t reserved_3f8;
volatile spi_mem_s_date_reg_t mem_date;
} spi_mem_s_dev_t;
extern spi_mem_s_dev_t SPIMEM2;
#ifndef __cplusplus
_Static_assert(sizeof(spi_mem_s_dev_t) == 0x400, "Invalid size of spi_mem_s_dev_t structure");
#endif
#ifdef __cplusplus
}
#endif