mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
d604e09274
This commit adds support for LP ADC initialization to the esp_adc oneshot driver, when it is used from the HP core.
203 lines
7.1 KiB
C
203 lines
7.1 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/adc_oneshot_hal.h"
|
|
#include "hal/adc_hal_common.h"
|
|
#include "hal/adc_ll.h"
|
|
#include "hal/assert.h"
|
|
#include "hal/log.h"
|
|
|
|
#if SOC_DAC_SUPPORTED
|
|
#include "hal/dac_ll.h"
|
|
#endif
|
|
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
/**
|
|
* For chips without RTC controller, Digital controller is used to trigger an ADC single read.
|
|
*/
|
|
#include "esp_rom_sys.h"
|
|
#endif
|
|
|
|
|
|
#if CONFIG_ADC_DISABLE_DAC_OUTPUT
|
|
// To disable DAC, workarounds, see this function body to know more
|
|
static void s_disable_dac(adc_oneshot_hal_ctx_t *hal, adc_channel_t channel);
|
|
#endif
|
|
|
|
|
|
void adc_oneshot_hal_init(adc_oneshot_hal_ctx_t *hal, const adc_oneshot_hal_cfg_t *config)
|
|
{
|
|
hal->unit = config->unit;
|
|
hal->work_mode = config->work_mode;
|
|
hal->clk_src = config->clk_src;
|
|
hal->clk_src_freq_hz = config->clk_src_freq_hz;
|
|
}
|
|
|
|
void adc_oneshot_hal_channel_config(adc_oneshot_hal_ctx_t *hal, const adc_oneshot_hal_chan_cfg_t *config, adc_channel_t chan)
|
|
{
|
|
hal->chan_configs[chan].atten = config->atten;
|
|
hal->chan_configs[chan].bitwidth = config->bitwidth;
|
|
}
|
|
|
|
void adc_oneshot_hal_setup(adc_oneshot_hal_ctx_t *hal, adc_channel_t chan)
|
|
{
|
|
adc_unit_t unit = hal->unit;
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
adc_ll_hall_disable(); //Disable other peripherals.
|
|
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
|
|
#endif
|
|
|
|
#if CONFIG_ADC_DISABLE_DAC_OUTPUT
|
|
s_disable_dac(hal, chan);
|
|
#endif
|
|
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
adc_ll_digi_clk_sel(hal->clk_src);
|
|
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT);
|
|
adc_ll_digi_set_clk_div(ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT);
|
|
#else
|
|
#if SOC_LP_ADC_SUPPORTED
|
|
if (hal->work_mode == ADC_HAL_LP_MODE) {
|
|
adc_ll_set_sar_clk_div(unit, LP_ADC_LL_SAR_CLK_DIV_DEFAULT(unit));
|
|
} else {
|
|
adc_ll_set_sar_clk_div(unit, ADC_LL_SAR_CLK_DIV_DEFAULT(unit));
|
|
}
|
|
#else
|
|
adc_ll_set_sar_clk_div(unit, ADC_LL_SAR_CLK_DIV_DEFAULT(unit));
|
|
#endif //SOC_LP_ADC_SUPPORTED
|
|
if (unit == ADC_UNIT_2) {
|
|
adc_ll_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT);
|
|
}
|
|
#endif
|
|
|
|
adc_oneshot_ll_output_invert(unit, ADC_LL_DATA_INVERT_DEFAULT(unit));
|
|
adc_oneshot_ll_set_atten(unit, chan, hal->chan_configs[chan].atten);
|
|
adc_oneshot_ll_set_output_bits(unit, hal->chan_configs[chan].bitwidth);
|
|
adc_oneshot_ll_set_channel(unit, chan);
|
|
adc_hal_set_controller(unit, hal->work_mode);
|
|
|
|
#if SOC_ADC_ARBITER_SUPPORTED
|
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
|
adc_hal_arbiter_config(&config);
|
|
#endif //#if SOC_ADC_ARBITER_SUPPORTED
|
|
}
|
|
|
|
static void adc_hal_onetime_start(adc_unit_t unit, uint32_t clk_src_freq_hz, uint32_t *read_delay_us)
|
|
{
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
(void)unit;
|
|
/**
|
|
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
|
|
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
|
|
* clock cycle.
|
|
*/
|
|
uint32_t adc_ctrl_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
|
|
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
|
|
uint32_t sample_delay_us = ((1000 * 1000) / adc_ctrl_clk + 1) * 3;
|
|
HAL_EARLY_LOGD("adc_hal", "clk_src_freq_hz: %"PRIu32", adc_ctrl_clk: %"PRIu32", sample_delay_us: %"PRIu32"", clk_src_freq_hz, adc_ctrl_clk, sample_delay_us);
|
|
|
|
//This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
|
|
if (adc_ctrl_clk >= APB_CLK_FREQ/8) {
|
|
sample_delay_us = 0;
|
|
}
|
|
|
|
HAL_EARLY_LOGD("adc_hal", "delay for `onetime_start` signal captured: %"PRIu32"", sample_delay_us);
|
|
adc_oneshot_ll_start(false);
|
|
esp_rom_delay_us(sample_delay_us);
|
|
adc_oneshot_ll_start(true);
|
|
|
|
#if ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL
|
|
/**
|
|
* There is a hardware limitation.
|
|
* After ADC get DONE signal, it still need a delay to synchronize ADC raw data or it may get zero.
|
|
* A rough estimate for this step should be at least ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL ADC sar clock cycle.
|
|
*/
|
|
uint32_t sar_clk = adc_ctrl_clk / ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT;
|
|
*read_delay_us = ((1000 * 1000) / sar_clk + 1) * ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL;
|
|
HAL_EARLY_LOGD("adc_hal", "clk_src_freq_hz: %"PRIu32", sar_clk: %"PRIu32", read_delay_us: %"PRIu32"", clk_src_freq_hz, sar_clk, read_delay_us);
|
|
#endif //ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL
|
|
|
|
#else
|
|
adc_oneshot_ll_start(unit);
|
|
#endif // SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
}
|
|
|
|
bool adc_oneshot_hal_convert(adc_oneshot_hal_ctx_t *hal, int *out_raw)
|
|
{
|
|
bool valid = true;
|
|
uint32_t event = 0;
|
|
uint32_t read_delay_us = 0;
|
|
if (hal->unit == ADC_UNIT_1) {
|
|
event = ADC_LL_EVENT_ADC1_ONESHOT_DONE;
|
|
} else {
|
|
event = ADC_LL_EVENT_ADC2_ONESHOT_DONE;
|
|
}
|
|
|
|
adc_oneshot_ll_clear_event(event);
|
|
adc_oneshot_ll_disable_all_unit();
|
|
adc_oneshot_ll_enable(hal->unit);
|
|
|
|
adc_hal_onetime_start(hal->unit, hal->clk_src_freq_hz, &read_delay_us);
|
|
while (!adc_oneshot_ll_get_event(event)) {
|
|
;
|
|
}
|
|
esp_rom_delay_us(read_delay_us);
|
|
*out_raw = adc_oneshot_ll_get_raw_result(hal->unit);
|
|
#if SOC_ADC_ARBITER_SUPPORTED
|
|
if (hal->unit == ADC_UNIT_2) {
|
|
valid = adc_oneshot_ll_raw_check_valid(ADC_UNIT_2, *out_raw);
|
|
if (!valid) {
|
|
*out_raw = -1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
adc_oneshot_ll_disable_all_unit();
|
|
return valid;
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
Workarounds
|
|
---------------------------------------------------------------*/
|
|
#if CONFIG_ADC_DISABLE_DAC_OUTPUT
|
|
static void s_disable_dac(adc_oneshot_hal_ctx_t *hal, adc_channel_t channel)
|
|
{
|
|
/**
|
|
* Workaround: Disable the synchronization operation function of ADC1 and DAC.
|
|
* If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage.
|
|
*/
|
|
if (hal->unit == ADC_UNIT_1) {
|
|
dac_ll_rtc_sync_by_adc(false);
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
if (hal->unit == ADC_UNIT_2) {
|
|
if (channel == ADC_CHANNEL_8) {
|
|
dac_ll_power_down(DAC_CHAN_0); // the same as DAC channel 0
|
|
}
|
|
if (channel == ADC_CHANNEL_9) {
|
|
dac_ll_power_down(DAC_CHAN_1);
|
|
}
|
|
}
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
if (hal->unit == ADC_UNIT_2) {
|
|
if (channel == ADC_CHANNEL_6) {
|
|
dac_ll_power_down(DAC_CHAN_0); // the same as DAC channel 0
|
|
}
|
|
if (channel == ADC_CHANNEL_7) {
|
|
dac_ll_power_down(DAC_CHAN_1);
|
|
}
|
|
}
|
|
#else
|
|
//Nothing needed (DAC is only supported on ESP32 and ESP32S2), add this if future chips needs
|
|
#endif
|
|
}
|
|
#endif
|