esp-idf/components/hal/esp32s2/adc_hal.c
Angus Gratton f09b8ae7a4 driver: Add esp32c3 ADC driver
Based on internal commit 3ef01301fffa552d4be6d81bc9d199c223224305
2020-12-23 09:53:24 +11:00

232 lines
8.2 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The HAL layer for ADC (ESP32-S2 specific part)
#include "sdkconfig.h"
#include "hal/adc_hal.h"
#include "hal/adc_types.h"
#include "hal/adc_hal_conf.h"
#include "esp_log.h"
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
void adc_hal_digi_deinit(void)
{
adc_ll_digi_trigger_disable(); // boss
adc_ll_digi_dma_disable();
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_filter_reset(ADC_NUM_1);
adc_ll_digi_filter_reset(ADC_NUM_2);
adc_ll_digi_reset();
adc_ll_digi_controller_clk_disable();
adc_hal_deinit();
}
void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
{
/* If enable digtal controller, adc xpd should always on. */
adc_ll_set_power_manage(ADC_POWER_SW_ON);
/* Single channel mode or multi channel mode. */
adc_ll_digi_set_convert_mode(cfg->conv_mode);
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
if (cfg->adc1_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len);
for (int i = 0; i < cfg->adc1_pattern_len; i++) {
adc_ll_digi_set_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
if (cfg->adc2_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len);
for (int i = 0; i < cfg->adc2_pattern_len; i++) {
adc_ll_digi_set_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
adc_ll_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
adc_ll_set_controller(ADC_NUM_2, ADC_CTRL_DIG);
}
adc_ll_digi_set_output_format(cfg->format);
if (cfg->conv_limit_en) {
adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
adc_ll_digi_convert_limit_enable();
} else {
adc_ll_digi_convert_limit_disable();
}
adc_ll_digi_set_trigger_interval(cfg->interval);
adc_hal_digi_clk_config(&cfg->dig_clk);
adc_ll_digi_dma_set_eof_num(cfg->dma_eof_num);
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @note ADC and DAC digital controller share the same frequency divider.
* Please set a reasonable frequency division factor to meet the sampling frequency of the ADC and the output frequency of the DAC.
*
* @param clk Refer to ``adc_digi_clk_t``.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk)
{
adc_ll_digi_controller_clk_div(clk->div_num, clk->div_b, clk->div_a);
adc_ll_digi_controller_clk_enable(clk->use_apll);
}
/**
* Enable digital controller to trigger the measurement.
*/
void adc_hal_digi_enable(void)
{
adc_ll_digi_dma_enable();
adc_ll_digi_trigger_enable();
}
/**
* Disable digital controller to trigger the measurement.
*/
void adc_hal_digi_disable(void)
{
adc_ll_digi_trigger_disable();
adc_ll_digi_dma_disable();
}
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to ``adc_digi_monitor_t``.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
{
adc_ll_digi_monitor_set_mode(adc_n, config->mode);
adc_ll_digi_monitor_set_thres(adc_n, config->threshold);
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Config ADC2 module arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to ``adc_arbiter_t``.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config)
{
adc_ll_set_arbiter_work_mode(config->mode);
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
}
/*---------------------------------------------------------------
ADC calibration setting
---------------------------------------------------------------*/
#define ADC_HAL_CAL_TIMES (10)
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
{
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
}
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_hal_set_power_manage(ADC_POWER_SW_ON);
if (adc_n == ADC_NUM_2) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
}
adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
adc_ll_rtc_disable_channel(adc_n, channel);
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
} else {
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_set_atten(adc_n, channel, atten);
}
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
uint32_t code_sum = 0;
uint32_t code_h = 0;
uint32_t code_l = 0;
uint32_t chk_code = 0;
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
code_h = ADC_HAL_CAL_OFFSET_RANGE;
code_l = 0;
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
uint32_t self_cal = read_cal_channel(adc_n, channel);
while (code_h - code_l > 1) {
if (self_cal == 0) {
code_h = chk_code;
} else {
code_l = chk_code;
}
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
self_cal = read_cal_channel(adc_n, channel);
if ((code_h - code_l == 1)) {
chk_code += 1;
adc_ll_set_calibration_param(adc_n, chk_code);
self_cal = read_cal_channel(adc_n, channel);
}
}
code_list[rpt] = chk_code;
code_sum += chk_code;
}
code_l = code_list[0];
code_h = code_list[0];
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
if (code_l > code_list[i]) {
code_l = code_list[i];
}
if (code_h < code_list[i]) {
code_h = code_list[i];
}
}
chk_code = code_h + code_l;
uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
adc_ll_calibration_finish(adc_n);
return ret;
}