esp-idf/components/mbedtls/port/aes/esp_aes_gcm.c
harshal.patil 38255c048a fix(mbedtls): Fixed the transmission of return values of the esp-aes APIs
- Earlier, some intermediate return values were not stored and returned,
thus incorrect return values used to get transmitted to the upper layer of APIs.

- Also, zeroised the output buffer in case of error condition.
2023-07-12 14:41:41 +05:30

744 lines
22 KiB
C

/*
* GCM block cipher, ESP DMA hardware accelerated version
* Based on mbedTLS FIPS-197 compliant version.
*
* SPDX-FileCopyrightText: The Mbed TLS Contributors
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
#include "soc/soc_caps.h"
#include "aes/esp_aes.h"
#include "aes/esp_aes_gcm.h"
#include "aes/esp_aes_internal.h"
#include "hal/aes_hal.h"
#include "esp_log.h"
#include "mbedtls/aes.h"
#include "mbedtls/gcm.h"
#include "esp_heap_caps.h"
#include "soc/soc_memory_layout.h"
#include "mbedtls/error.h"
#include <string.h>
#define ESP_PUT_BE64(a, val) \
do { \
*(uint64_t*)(a) = __builtin_bswap64( (uint64_t)(val) ); \
} while (0)
/* For simplicity limit the maxium amount of aad bytes to a single DMA descriptor
This should cover all normal, e.g. mbedtls, use cases */
#define ESP_AES_GCM_AAD_MAX_BYTES 4080
static const char *TAG = "esp-aes-gcm";
static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z);
/*
* Calculates the Initial Counter Block, J0
* and copies to to the esp_gcm_context
*/
static void esp_gcm_derive_J0(esp_gcm_context *ctx)
{
uint8_t len_buf[16];
memset(ctx->J0, 0, AES_BLOCK_BYTES);
memset(len_buf, 0, AES_BLOCK_BYTES);
/* If IV is 96 bits J0 = ( IV || 0^31 || 1 ) */
if (ctx->iv_len == 12) {
memcpy(ctx->J0, ctx->iv, ctx->iv_len);
ctx->J0[AES_BLOCK_BYTES - 1] |= 1;
} else {
/* For IV != 96 bit, J0 = GHASH(IV || 0[s+64] || [len(IV)]64) */
/* First calculate GHASH on IV */
esp_gcm_ghash(ctx, ctx->iv, ctx->iv_len, ctx->J0);
/* Next create 128 bit block which is equal to
64 bit 0 + iv length truncated to 64 bits */
ESP_PUT_BE64(len_buf + 8, ctx->iv_len * 8);
/* Calculate GHASH on last block */
esp_gcm_ghash(ctx, len_buf, 16, ctx->J0);
}
}
/*
* Increment J0 as per GCM spec, by applying the Standard Incrementing
Function INC_32 to it.
* j is the counter which needs to be incremented which is
* copied to ctx->J0 after incrementing
*/
static void increment32_j0(esp_gcm_context *ctx, uint8_t *j)
{
uint8_t j_len = AES_BLOCK_BYTES;
memcpy(j, ctx->J0, AES_BLOCK_BYTES);
if (j) {
for (uint32_t i = j_len; i > (j_len - 4); i--) {
if (++j[i - 1] != 0) {
break;
}
}
memcpy(ctx->J0, j, AES_BLOCK_BYTES);
}
}
/* Function to xor two data blocks */
static void xor_data(uint8_t *d, const uint8_t *s)
{
for (int i = 0; i < AES_BLOCK_BYTES; i++) {
d[i] ^= s[i];
}
}
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/* Based on MbedTLS's implemenation
*
* Precompute small multiples of H, that is set
* HH[i] || HL[i] = H times i,
* where i is seen as a field element as in [MGV], ie high-order bits
* correspond to low powers of P. The result is stored in the same way, that
* is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
* corresponds to P^127.
*/
static int gcm_gen_table( esp_gcm_context *ctx )
{
int i, j;
uint64_t hi, lo;
uint64_t vl, vh;
unsigned char *h;
h = ctx->H;
/* pack h as two 64-bits ints, big-endian */
GET_UINT32_BE( hi, h, 0 );
GET_UINT32_BE( lo, h, 4 );
vh = (uint64_t) hi << 32 | lo;
GET_UINT32_BE( hi, h, 8 );
GET_UINT32_BE( lo, h, 12 );
vl = (uint64_t) hi << 32 | lo;
/* 8 = 1000 corresponds to 1 in GF(2^128) */
ctx->HL[8] = vl;
ctx->HH[8] = vh;
/* 0 corresponds to 0 in GF(2^128) */
ctx->HH[0] = 0;
ctx->HL[0] = 0;
for ( i = 4; i > 0; i >>= 1 ) {
uint32_t T = ( vl & 1 ) * 0xe1000000U;
vl = ( vh << 63 ) | ( vl >> 1 );
vh = ( vh >> 1 ) ^ ( (uint64_t) T << 32);
ctx->HL[i] = vl;
ctx->HH[i] = vh;
}
for ( i = 2; i <= 8; i *= 2 ) {
uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
vh = *HiH;
vl = *HiL;
for ( j = 1; j < i; j++ ) {
HiH[j] = vh ^ ctx->HH[j];
HiL[j] = vl ^ ctx->HL[j];
}
}
return ( 0 );
}
/*
* Shoup's method for multiplication use this table with
* last4[x] = x times P^128
* where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
*/
static const uint64_t last4[16] = {
0x0000, 0x1c20, 0x3840, 0x2460,
0x7080, 0x6ca0, 0x48c0, 0x54e0,
0xe100, 0xfd20, 0xd940, 0xc560,
0x9180, 0x8da0, 0xa9c0, 0xb5e0
};
/* Based on MbedTLS's implemenation
*
* Sets output to x times H using the precomputed tables.
* x and output are seen as elements of GF(2^128) as in [MGV].
*/
static void gcm_mult( esp_gcm_context *ctx, const unsigned char x[16],
unsigned char output[16] )
{
int i = 0;
unsigned char lo, hi, rem;
uint64_t zh, zl;
lo = x[15] & 0xf;
zh = ctx->HH[lo];
zl = ctx->HL[lo];
for ( i = 15; i >= 0; i-- ) {
lo = x[i] & 0xf;
hi = x[i] >> 4;
if ( i != 15 ) {
rem = (unsigned char) zl & 0xf;
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= ctx->HH[lo];
zl ^= ctx->HL[lo];
}
rem = (unsigned char) zl & 0xf;
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= ctx->HH[hi];
zl ^= ctx->HL[hi];
}
PUT_UINT32_BE( zh >> 32, output, 0 );
PUT_UINT32_BE( zh, output, 4 );
PUT_UINT32_BE( zl >> 32, output, 8 );
PUT_UINT32_BE( zl, output, 12 );
}
/* Update the key value in gcm context */
int esp_aes_gcm_setkey( esp_gcm_context *ctx,
mbedtls_cipher_id_t cipher,
const unsigned char *key,
unsigned int keybits )
{
#if !SOC_AES_SUPPORT_AES_192
if (keybits == 192) {
return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
}
#endif
if (keybits != 128 && keybits != 192 && keybits != 256) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
ctx->aes_ctx.key_bytes = keybits / 8;
memcpy(ctx->aes_ctx.key, key, ctx->aes_ctx.key_bytes);
return ( 0 );
}
/* AES-GCM GHASH calculation z = GHASH(x) using h0 hash key
*/
static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z)
{
uint8_t tmp[AES_BLOCK_BYTES];
memset(tmp, 0, AES_BLOCK_BYTES);
/* GHASH(X) is calculated on input string which is multiple of 128 bits
* If input string bit length is not multiple of 128 bits it needs to
* be padded by 0
*
* Steps:
* 1. Let X1, X2, ... , Xm-1, Xm denote the unique sequence of blocks such
* that X = X1 || X2 || ... || Xm-1 || Xm.
* 2. Let Y0 be the “zero block,” 0128.
* 3. Fori=1,...,m,letYi =(Yi-1 ^ Xi)•H.
* 4. Return Ym
*/
/* If input bit string is >= 128 bits, process full 128 bit blocks */
while (x_len >= AES_BLOCK_BYTES) {
xor_data(z, x);
gcm_mult(ctx, z, z);
x += AES_BLOCK_BYTES;
x_len -= AES_BLOCK_BYTES;
}
/* If input bit string is not multiple of 128 create last 128 bit
* block by padding necessary 0s
*/
if (x_len) {
memcpy(tmp, x, x_len);
xor_data(z, tmp);
gcm_mult(ctx, z, z);
}
}
/* Function to init AES GCM context to zero */
void esp_aes_gcm_init( esp_gcm_context *ctx)
{
if (ctx == NULL) {
return;
}
bzero(ctx, sizeof(esp_gcm_context));
ctx->gcm_state = ESP_AES_GCM_STATE_INIT;
}
/* Function to clear AES-GCM context */
void esp_aes_gcm_free( esp_gcm_context *ctx)
{
if (ctx == NULL) {
return;
}
bzero(ctx, sizeof(esp_gcm_context));
}
/* Setup AES-GCM */
int esp_aes_gcm_starts( esp_gcm_context *ctx,
int mode,
const unsigned char *iv,
size_t iv_len )
{
/* IV is limited to 2^32 bits, so 2^29 bytes */
/* IV is not allowed to be zero length */
if ( iv_len == 0 ||
( (uint32_t) iv_len ) >> 29 != 0 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
/* Initialize AES-GCM context */
memset(ctx->ghash, 0, sizeof(ctx->ghash));
ctx->data_len = 0;
ctx->aad = NULL;
ctx->aad_len = 0;
ctx->iv = iv;
ctx->iv_len = iv_len;
ctx->mode = mode;
/* H and the lookup table are only generated once per ctx */
if (ctx->gcm_state == ESP_AES_GCM_STATE_INIT) {
/* Lock the AES engine to calculate ghash key H in hardware */
#if SOC_AES_SUPPORT_GCM
esp_aes_acquire_hardware();
ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
aes_hal_gcm_calc_hash(ctx->H);
esp_aes_release_hardware();
#else
memset(ctx->H, 0, sizeof(ctx->H));
int ret = esp_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->H, ctx->H);
if (ret != 0) {
return ret;
}
#endif
gcm_gen_table(ctx);
}
/* Once H is obtained we need to derive J0 (Initial Counter Block) */
esp_gcm_derive_J0(ctx);
/* The initial counter block keeps updating during the esp_gcm_update call
* however to calculate final authentication tag T we need original J0
* so we make a copy here
*/
memcpy(ctx->ori_j0, ctx->J0, 16);
ctx->gcm_state = ESP_AES_GCM_STATE_START;
return ( 0 );
}
int esp_aes_gcm_update_ad( esp_gcm_context *ctx,
const unsigned char *aad,
size_t aad_len )
{
/* AD are limited to 2^32 bits, so 2^29 bytes */
if ( ( (uint32_t) aad_len ) >> 29 != 0 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if ( (aad_len > 0) && !aad) {
ESP_LOGE(TAG, "No aad supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if (ctx->gcm_state != ESP_AES_GCM_STATE_START) {
ESP_LOGE(TAG, "AES context in invalid state!");
return -1;
}
/* Initialise associated data */
ctx->aad = aad;
ctx->aad_len = aad_len;
esp_gcm_ghash(ctx, ctx->aad, ctx->aad_len, ctx->ghash);
return ( 0 );
}
/* Perform AES-GCM operation */
int esp_aes_gcm_update( esp_gcm_context *ctx,
const unsigned char *input, size_t input_length,
unsigned char *output, size_t output_size,
size_t *output_length )
{
size_t nc_off = 0;
uint8_t nonce_counter[AES_BLOCK_BYTES] = {0};
uint8_t stream[AES_BLOCK_BYTES] = {0};
if (!output_length) {
ESP_LOGE(TAG, "No output length supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
*output_length = input_length;
if (!ctx) {
ESP_LOGE(TAG, "No GCM context supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if (!input) {
ESP_LOGE(TAG, "No input supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if (!output) {
ESP_LOGE(TAG, "No output supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if ( output > input && (size_t) ( output - input ) < input_length ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
/* If this is the first time esp_gcm_update is getting called
* calculate GHASH on aad and preincrement the ICB
*/
if (ctx->gcm_state == ESP_AES_GCM_STATE_START) {
/* Jo needs to be incremented first time, later the CTR
* operation will auto update it
*/
increment32_j0(ctx, nonce_counter);
ctx->gcm_state = ESP_AES_GCM_STATE_UPDATE;
} else if (ctx->gcm_state == ESP_AES_GCM_STATE_UPDATE) {
memcpy(nonce_counter, ctx->J0, AES_BLOCK_BYTES);
}
/* Perform intermediate GHASH on "encrypted" data during decryption */
if (ctx->mode == ESP_AES_DECRYPT) {
esp_gcm_ghash(ctx, input, input_length, ctx->ghash);
}
/* Output = GCTR(J0, Input): Encrypt/Decrypt the input */
int ret = esp_aes_crypt_ctr(&ctx->aes_ctx, input_length, &nc_off, nonce_counter, stream, input, output);
if (ret != 0) {
return ret;
}
/* ICB gets auto incremented after GCTR operation here so update the context */
memcpy(ctx->J0, nonce_counter, AES_BLOCK_BYTES);
/* Keep updating the length counter for final tag calculation */
ctx->data_len += input_length;
/* Perform intermediate GHASH on "encrypted" data during encryption*/
if (ctx->mode == ESP_AES_ENCRYPT) {
esp_gcm_ghash(ctx, output, input_length, ctx->ghash);
}
return 0;
}
/* Function to read the tag value */
int esp_aes_gcm_finish( esp_gcm_context *ctx,
unsigned char *output, size_t output_size,
size_t *output_length,
unsigned char *tag, size_t tag_len )
{
size_t nc_off = 0;
uint8_t len_block[AES_BLOCK_BYTES] = {0};
uint8_t stream[AES_BLOCK_BYTES] = {0};
if ( tag_len > 16 || tag_len < 4 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
/* Calculate final GHASH on aad_len, data length */
ESP_PUT_BE64(len_block, ctx->aad_len * 8);
ESP_PUT_BE64(len_block + 8, ctx->data_len * 8);
esp_gcm_ghash(ctx, len_block, AES_BLOCK_BYTES, ctx->ghash);
/* Tag T = GCTR(J0, ) where T is truncated to tag_len */
return esp_aes_crypt_ctr(&ctx->aes_ctx, tag_len, &nc_off, ctx->ori_j0, stream, ctx->ghash, tag);
}
#if SOC_AES_SUPPORT_GCM
/* Due to restrictions in the hardware (e.g. need to do the whole conversion in one go),
some combinations of inputs are not supported */
static bool esp_aes_gcm_input_support_hw_accel(size_t length, const unsigned char *aad, size_t aad_len,
const unsigned char *input, unsigned char *output, uint8_t *stream_in)
{
bool support_hw_accel = true;
if (aad_len > ESP_AES_GCM_AAD_MAX_BYTES) {
support_hw_accel = false;
} else if (!esp_ptr_dma_capable(aad) && aad_len > 0) {
/* aad in non internal DMA memory */
support_hw_accel = false;
} else if (!esp_ptr_dma_capable(input) && length > 0) {
/* input in non internal DMA memory */
support_hw_accel = false;
} else if (!esp_ptr_dma_capable(output) && length > 0) {
/* output in non internal DMA memory */
support_hw_accel = false;
} else if (!esp_ptr_dma_capable(stream_in)) {
/* Stream in (and therefor other descriptors and buffers that come from the stack)
in non internal DMA memory */
support_hw_accel = false;
} else if (length == 0) {
support_hw_accel = false;
}
return support_hw_accel;
}
#endif
static int esp_aes_gcm_crypt_and_tag_partial_hw( esp_gcm_context *ctx,
int mode,
size_t length,
const unsigned char *iv,
size_t iv_len,
const unsigned char *aad,
size_t aad_len,
const unsigned char *input,
unsigned char *output,
size_t tag_len,
unsigned char *tag )
{
int ret = 0;
size_t olen;
if ( ( ret = esp_aes_gcm_starts( ctx, mode, iv, iv_len ) ) != 0 ) {
return ( ret );
}
if ( ( ret = esp_aes_gcm_update_ad( ctx, aad, aad_len ) ) != 0 ) {
return ( ret );
}
if ( ( ret = esp_aes_gcm_update( ctx, input, length, output, 0, &olen ) ) != 0 ) {
return ( ret );
}
if ( ( ret = esp_aes_gcm_finish( ctx, output, 0, &olen, tag, tag_len ) ) != 0 ) {
return ( ret );
}
return ret;
}
int esp_aes_gcm_crypt_and_tag( esp_gcm_context *ctx,
int mode,
size_t length,
const unsigned char *iv,
size_t iv_len,
const unsigned char *aad,
size_t aad_len,
const unsigned char *input,
unsigned char *output,
size_t tag_len,
unsigned char *tag )
{
#if SOC_AES_SUPPORT_GCM
int ret;
lldesc_t aad_desc[2] = {};
lldesc_t *aad_head_desc = NULL;
size_t remainder_bit;
uint8_t stream_in[AES_BLOCK_BYTES] = {};
unsigned stream_bytes = aad_len % AES_BLOCK_BYTES; // bytes which aren't in a full block
unsigned block_bytes = aad_len - stream_bytes; // bytes which are in a full block
/* Due to hardware limition only certain cases are fully supported in HW */
if (!esp_aes_gcm_input_support_hw_accel(length, aad, aad_len, input, output, stream_in)) {
return esp_aes_gcm_crypt_and_tag_partial_hw(ctx, mode, length, iv, iv_len, aad, aad_len, input, output, tag_len, tag);
}
/* Limit aad len to a single DMA descriptor to simplify DMA handling
In practice, e.g. with mbedtls the length of aad will always be short
*/
if (aad_len > LLDESC_MAX_NUM_PER_DESC) {
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
/* IV and AD are limited to 2^32 bits, so 2^29 bytes */
/* IV is not allowed to be zero length */
if ( iv_len == 0 ||
( (uint32_t) iv_len ) >> 29 != 0 ||
( (uint32_t) aad_len ) >> 29 != 0 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
if ( (aad_len > 0) && !aad) {
ESP_LOGE(TAG, "No aad supplied");
return MBEDTLS_ERR_GCM_BAD_INPUT;
}
/* Initialize AES-GCM context */
memset(ctx->ghash, 0, sizeof(ctx->ghash));
ctx->data_len = 0;
ctx->iv = iv;
ctx->iv_len = iv_len;
ctx->aad = aad;
ctx->aad_len = aad_len;
ctx->mode = mode;
esp_aes_acquire_hardware();
ctx->aes_ctx.key_in_hardware = 0;
ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
if (block_bytes > 0) {
aad_desc[0].length = block_bytes;
aad_desc[0].size = block_bytes;
aad_desc[0].owner = 1;
aad_desc[0].buf = aad;
}
if (stream_bytes > 0) {
memcpy(stream_in, aad + block_bytes, stream_bytes);
aad_desc[0].empty = (uint32_t)&aad_desc[1];
aad_desc[1].length = AES_BLOCK_BYTES;
aad_desc[1].size = AES_BLOCK_BYTES;
aad_desc[1].owner = 1;
aad_desc[1].buf = stream_in;
}
if (block_bytes > 0) {
aad_head_desc = &aad_desc[0];
} else if (stream_bytes > 0) {
aad_head_desc = &aad_desc[1];
}
aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
/* See TRM GCM chapter for description of this calculation */
remainder_bit = (8 * length) % 128;
aes_hal_gcm_init( (aad_len + AES_BLOCK_BYTES - 1) / AES_BLOCK_BYTES, remainder_bit);
aes_hal_gcm_calc_hash(ctx->H);
gcm_gen_table(ctx);
esp_gcm_derive_J0(ctx);
aes_hal_gcm_set_j0(ctx->J0);
ret = esp_aes_process_dma_gcm(&ctx->aes_ctx, input, output, length, aad_head_desc, aad_len);
if (ret != 0) {
esp_aes_release_hardware();
return ret;
}
aes_hal_gcm_read_tag(tag, tag_len);
esp_aes_release_hardware();
return ( ret );
#else
return esp_aes_gcm_crypt_and_tag_partial_hw(ctx, mode, length, iv, iv_len, aad, aad_len, input, output, tag_len, tag);
#endif
}
int esp_aes_gcm_auth_decrypt( esp_gcm_context *ctx,
size_t length,
const unsigned char *iv,
size_t iv_len,
const unsigned char *aad,
size_t aad_len,
const unsigned char *tag,
size_t tag_len,
const unsigned char *input,
unsigned char *output )
{
int ret;
unsigned char check_tag[16];
size_t i;
int diff;
if ( ( ret = esp_aes_gcm_crypt_and_tag( ctx, ESP_AES_DECRYPT, length,
iv, iv_len, aad, aad_len,
input, output, tag_len, check_tag ) ) != 0 ) {
return ( ret );
}
/* Check tag in "constant-time" */
for ( diff = 0, i = 0; i < tag_len; i++ ) {
diff |= tag[i] ^ check_tag[i];
}
if ( diff != 0 ) {
bzero( output, length );
return ( MBEDTLS_ERR_GCM_AUTH_FAILED );
}
return ( 0 );
}