esp-idf/components/hal/esp32s2/include/hal/adc_ll.h

1186 lines
41 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include "hal/misc.h"
#include "soc/adc_periph.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/assert.h"
#include "soc/apb_saradc_struct.h"
#include "soc/sens_struct.h"
#include "soc/sens_reg.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/regi2c_defs.h"
#include "soc/clk_tree_defs.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE (1 << 0)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE (1 << 1)
/*---------------------------------------------------------------
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA
---------------------------------------------------------------*/
#define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_LL_FSM_START_WAIT_DEFAULT (5)
#define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_LL_SAMPLE_CYCLE_DEFAULT (3)
#define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (2)
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_LL_PWDET_CCT_DEFAULT (4)
typedef enum {
ADC_LL_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_LL_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_LL_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
} adc_ll_power_t;
typedef enum {
ADC_LL_RTC_DATA_OK = 0,
ADC_LL_RTC_CTRL_UNSELECTED = 1,
ADC_LL_RTC_CTRL_BREAK = 2,
ADC_LL_RTC_DATA_FAIL = -1,
} adc_ll_rtc_raw_data_t;
typedef enum {
ADC_LL_CTRL_RTC = 0, ///< For ADC1. Select RTC controller.
ADC_LL_CTRL_ULP = 1, ///< For ADC1 and ADC2. Select ULP controller.
ADC_LL_CTRL_DIG = 2, ///< For ADC1. Select DIG controller.
ADC_LL_CTRL_ARB = 3, ///< For ADC2. The controller is selected by the arbiter.
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
ADC_LL_DIGI_CONV_ONLY_ADC2 = 1, // Only use ADC2 for conversion
ADC_LL_DIGI_CONV_BOTH_UNIT = 2, // Use Both ADC1 and ADC2 for conversion simultaneously
ADC_LL_DIGI_CONV_ALTER_UNIT = 3 // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t reserved: 2;
uint8_t channel: 4;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/**
* @brief Analyze whether the obtained raw data is correct.
* ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data.
*
*/
typedef struct {
union {
struct {
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
uint16_t reserved: 1; /*!<reserved */
uint16_t flag: 2; /*!<ADC data flag info.
If (flag == 0), The data is valid.
If (flag > 0), The data is invalid. */
};
uint16_t val;
};
} adc_ll_rtc_output_data_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait);
}
/**
* Set adc sample cycle.
*
* @note Normally, please use default value.
* @param sample_cycle The number of ADC sampling cycles. Range: 1 ~ 7.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param enable true: enable; false: disable
*/
static inline void adc_ll_digi_convert_limit_enable(bool enable)
{
APB_SARADC.ctrl2.meas_num_limit = enable;
}
/**
* Set adc conversion mode for digital controller.
*
* @param mode Conversion mode select.
* TODO IDF-3610
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
if (mode == ADC_LL_DIGI_CONV_ONLY_ADC1) {
APB_SARADC.ctrl.work_mode = 0;
APB_SARADC.ctrl.sar_sel = 0;
APB_SARADC.ctrl.data_sar_sel = 0;
} else if (mode == ADC_LL_DIGI_CONV_ONLY_ADC2) {
APB_SARADC.ctrl.work_mode = 0;
APB_SARADC.ctrl.sar_sel = 1;
APB_SARADC.ctrl.data_sar_sel = 0;
} else if (mode == ADC_LL_DIGI_CONV_BOTH_UNIT) {
APB_SARADC.ctrl.work_mode = 1;
APB_SARADC.ctrl.data_sar_sel = 1;
} else if (mode == ADC_LL_DIGI_CONV_ALTER_UNIT) {
APB_SARADC.ctrl.work_mode = 2;
APB_SARADC.ctrl.data_sar_sel = 1;
}
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_len = patt_len - 1;
}
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 15.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 8;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0xF) << 4);
if (table.unit == ADC_UNIT_1) {
tab = APB_SARADC.sar1_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
APB_SARADC.sar1_patt_tab[index] = tab; // Write back
} else { // adc_n == ADC_UNIT_2
tab = APB_SARADC.sar2_patt_tab[index]; // Read old register value
tab &= (~(0xFF000000 >> offset)); // clear old data
tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data
APB_SARADC.sar2_patt_tab[index] = tab; // Write back
}
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl.sar1_patt_p_clear = 1;
APB_SARADC.ctrl.sar1_patt_p_clear = 0;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl.sar2_patt_p_clear = 1;
APB_SARADC.ctrl.sar2_patt_p_clear = 0;
}
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
APB_SARADC.ctrl.wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should be larger than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 40 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
APB_SARADC.ctrl2.timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
APB_SARADC.ctrl2.timer_sel = 1;
APB_SARADC.ctrl2.timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
APB_SARADC.ctrl2.timer_en = 0;
APB_SARADC.ctrl2.timer_sel = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num);
APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b;
APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
APB_SARADC.apb_adc_clkm_conf.clk_sel = (clk_src == ADC_DIGI_CLK_SRC_APLL) ? 1 : 2;
APB_SARADC.ctrl.sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
APB_SARADC.ctrl.sar_clk_gated = 0;
APB_SARADC.apb_adc_clkm_conf.clk_sel = 0;
}
/**
* Reset adc digital controller filter.
*
* @param idx Filter index
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
{
(void)idx;
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_reset = 1;
APB_SARADC.filter_ctrl.adc1_filter_reset = 0;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_reset = 1;
APB_SARADC.filter_ctrl.adc2_filter_reset = 0;
}
}
/**
* Set adc digital controller filter coeff.
*
* @param idx filter index
* @param adc_n adc unit
* @param channel adc channel
* @param coeff filter coeff
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
{
(void)idx;
(void)channel;
int mode = 0;
switch (coeff) {
case ADC_DIGI_IIR_FILTER_COEFF_2: mode = 2; break;
case ADC_DIGI_IIR_FILTER_COEFF_4: mode = 4; break;
case ADC_DIGI_IIR_FILTER_COEFF_8: mode = 8; break;
case ADC_DIGI_IIR_FILTER_COEFF_16: mode = 16; break;
case ADC_DIGI_IIR_FILTER_COEFF_64: mode = 64; break;
default: mode = 8; break;
}
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_factor = mode;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_factor = mode;
}
}
/**
* Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param idx Filter index
* @param adc_n ADC unit
* @param enable Enable / Disable
*/
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
{
(void)idx;
if (adc_n == ADC_UNIT_1) {
APB_SARADC.filter_ctrl.adc1_filter_en = enable;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.filter_ctrl.adc2_filter_en = enable;
}
}
/**
* Get the filtered data of adc digital controller filter.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @return Filtered data.
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
return HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.filter_status, adc1_filter_data);
} else { // adc_n == ADC_UNIT_2
return HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.filter_status, adc2_filter_data);
}
}
/**
* Set monitor mode of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_unit_t adc_n, bool is_larger)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger;
}
}
/**
* Set monitor threshold of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param threshold Monitor threshold.
*/
static inline void adc_ll_digi_monitor_set_thres(adc_unit_t adc_n, uint32_t threshold)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres = threshold;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres = threshold;
}
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_enable(adc_unit_t adc_n, bool enable)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.thres_ctrl.adc1_thres_en = enable;
} else { // adc_n == ADC_UNIT_2
APB_SARADC.thres_ctrl.adc2_thres_en = enable;
}
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
APB_SARADC.dma_conf.apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
APB_SARADC.dma_conf.apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
APB_SARADC.dma_conf.apb_adc_reset_fsm = 1;
APB_SARADC.dma_conf.apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
SENS.sar_meas2_mux.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return SENS.sar_meas2_mux.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader1_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader2_ctrl, sar2_clk_div, div);
}
}
/**
* Set adc output data format for RTC controller.
*
* @note ESP32S2 RTC controller only support 13bit.
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32S2 only supports 13bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_13 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, int channel)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
/**
* Start conversion once by software for RTC controller.
*
* @note It may be block to wait conversion idle for ADC1.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_start(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
while (HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_slave_addr1, meas_status) != 0) {}
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_UNIT_2
SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
}
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event)
{
//For compatibility
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event)
{
bool ret = true;
if (event == ADC_LL_EVENT_ADC1_ONESHOT_DONE) {
ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
} else if (event == ADC_LL_EVENT_ADC2_ONESHOT_DONE) {
ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
} else {
HAL_ASSERT(false);
}
return ret;
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
uint32_t ret_val = 0;
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas1_ctrl2, meas1_data_sar);
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas2_ctrl2, meas2_data_sar);
}
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
*
* @param adc_n ADC unit.
* @param raw ADC raw data input (convert value).
* @return
* - true: raw data is valid
* - false: raw data is invalid
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw)
{
if (adc_n == ADC_UNIT_1) {
return true;
}
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw;
if (temp->flag == 0) {
return true;
} else {
//Could be ADC_LL_RTC_CTRL_UNSELECTED, ADC_LL_RTC_CTRL_BREAK or ADC_LL_RTC_DATA_FAIL
return false;
}
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Enable ADCn conversion complete interrupt for RTC controller.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_enable(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 1;
RTCCNTL.int_ena.rtc_saradc1 = 1;
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 1;
RTCCNTL.int_ena.rtc_saradc2 = 1;
}
}
/**
* Disable ADCn conversion complete interrupt for RTC controller.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_rtc_intr_disable(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 0;
RTCCNTL.int_ena.rtc_saradc1 = 0;
} else { // adc_n == ADC_UNIT_2
SENS.sar_reader2_ctrl.sar2_int_en = 0;
RTCCNTL.int_ena.rtc_saradc2 = 0;
}
}
/**
* Reset RTC controller FSM.
*/
static inline void adc_ll_rtc_reset(void)
{
SENS.sar_meas1_ctrl1.rtc_saradc_reset = 1;
SENS.sar_meas1_ctrl1.rtc_saradc_reset = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: [0,4].
*/
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
{
SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle;
}
/**
* Set the attenuation of a particular channel on ADCn.
*
* @note For any given channel, this function must be called before the first time conversion.
*
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
*
* When VDD_A is 3.3V:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 12dB attenuation (ADC_ATTEN_DB_12) gives full-scale voltage 3.9V (see note below)
*
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
*
* @note At 12dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 12dB attenuation (ADC_ATTEN_DB_12) between 150 to 2450mV
*
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @param atten The attenuation option.
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_UNIT_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_UNIT_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);
}
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n Not used, for compatibility
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
(void)adc_n;
//For compatibility
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
//For compatibility
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
__attribute__((always_inline))
static inline void adc_ll_digi_set_power_manage(adc_ll_power_t manage)
{
if (manage == ADC_LL_POWER_SW_ON) {
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 0x3;
} else if (manage == ADC_LL_POWER_BY_FSM) {
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 0x0;
} else if (manage == ADC_LL_POWER_SW_OFF) {
APB_SARADC.ctrl.sar_clk_gated = 0;
APB_SARADC.ctrl.xpd_sar_force = 0x2;
}
}
/**
* Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_UNIT_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
} else { // adc_n == ADC_UNIT_2
switch (ctrl) {
//If ADC2 is not controlled by ULP, the arbiter will decide which controller to use ADC2.
case ADC_LL_CTRL_ARB:
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
}
}
/**
* Set ADC2 module arbiter work mode.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
*
* @param mode Refer to ``adc_arbiter_mode_t``.
*/
__attribute__((always_inline))
static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
{
SENS.sar_meas2_mux.sar2_rtc_force = 0; // Enable arbiter in wakeup mode
if (mode == ADC_ARB_MODE_FIX) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1;
} else if (mode == ADC_ARB_MODE_LOOP) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter.
}
}
/**
* Set ADC2 module controller priority in arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
*
* @param pri_rtc RTC controller priority. Range: 0 ~ 2.
* @param pri_dig Digital controller priority. Range: 0 ~ 2.
* @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
*/
__attribute__((always_inline))
static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
{
if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet;
}
/* Should select highest priority controller. */
if (pri_rtc > pri_dig) {
if (pri_rtc > pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
}
} else {
if (pri_dig > pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
}
}
}
/**
* Force switch ADC2 to RTC controller in sleep mode. Shield arbiter.
* In sleep mode, the arbiter is in power-down mode.
* Need to switch the controller to RTC to shield the control of the arbiter.
* After waking up, it needs to switch to arbiter control.
*
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
* @note Only support ADC2.
*/
static inline void adc_ll_enable_sleep_controller(void)
{
SENS.sar_meas2_mux.sar2_rtc_force = 1;
}
/**
* Force switch ADC2 to arbiter in wakeup mode.
* In sleep mode, the arbiter is in power-down mode.
* Need to switch the controller to RTC to shield the control of the arbiter.
* After waking up, it needs to switch to arbiter control.
*
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
* @note Only support ADC2.
*/
static inline void adc_ll_disable_sleep_controller(void)
{
SENS.sar_meas2_mux.sar2_rtc_force = 0;
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
__attribute__((always_inline))
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4);
}
}
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd)
{
/* Should be called before writing I2C registers. */
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
} else {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
__attribute__((always_inline))
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
}
}
/* Temp code end. */
/**
* Output ADCn inter reference voltage to ADC2 channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC2's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @param[in] adc ADC unit select
* @param[in] channel ADC2 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
if (en) {
if (adc == ADC_UNIT_1) {
/* Config test mux to route v_ref to ADC1 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
} else {
/* Config test mux to route v_ref to ADC2 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
}
//in sleep force to use rtc to control ADC
SENS.sar_meas2_mux.sar2_rtc_force = 1;
//set sar2_en_test
SENS.sar_meas2_ctrl1.sar2_en_test = 1;
//set sar2 en force
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; //Pad bitmap controlled by SW
//set en_pad for ADC2 channels (bits 0x380)
SENS.sar_meas2_ctrl2.sar2_en_pad = 1 << channel;
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
SENS.sar_meas2_mux.sar2_rtc_force = 0;
//set sar2_en_test
SENS.sar_meas2_ctrl1.sar2_en_test = 0;
//set sar2 en force
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; //Pad bitmap controlled by SW
//set en_pad for ADC2 channels (bits 0x380)
SENS.sar_meas2_ctrl2.sar2_en_pad = 0;
}
}
#ifdef __cplusplus
}
#endif