esp-idf/components/freertos/Kconfig
Angus Gratton ca7485cc9a freertos: Remove "stop program on scheduler start when JTAG/OCD is detected" option
No longer used with new dual core target & JTAG instructions.
2017-10-13 10:54:02 +11:00

311 lines
12 KiB
Plaintext

menu "FreeRTOS"
# This is actually also handled in the ESP32 startup code, not only in FreeRTOS.
config FREERTOS_UNICORE
bool "Run FreeRTOS only on first core"
default n
help
This version of FreeRTOS normally takes control of all cores of
the CPU. Select this if you only want to start it on the first core.
This is needed when e.g. another process needs complete control
over the second core.
choice FREERTOS_CORETIMER
prompt "Xtensa timer to use as the FreeRTOS tick source"
default CONFIG_FREERTOS_CORETIMER_0
help
FreeRTOS needs a timer with an associated interrupt to use as
the main tick source to increase counters, run timers and do
pre-emptive multitasking with. There are multiple timers available
to do this, with different interrupt priorities. Check
config FREERTOS_CORETIMER_0
bool "Timer 0 (int 6, level 1)"
help
Select this to use timer 0
config FREERTOS_CORETIMER_1
bool "Timer 1 (int 15, level 3)"
help
Select this to use timer 1
endchoice
config FREERTOS_HZ
int "Tick rate (Hz)"
range 1 1000
default 100
help
Select the tick rate at which FreeRTOS does pre-emptive context switching.
config FREERTOS_ASSERT_ON_UNTESTED_FUNCTION
bool "Halt when an SMP-untested function is called"
default y
help
Some functions in FreeRTOS have not been thoroughly tested yet when moving to
the SMP implementation of FreeRTOS. When this option is enabled, these fuctions
will throw an assert().
choice FREERTOS_CHECK_STACKOVERFLOW
prompt "Check for stack overflow"
default FREERTOS_CHECK_STACKOVERFLOW_CANARY
help
FreeRTOS can check for stack overflows in threads and trigger an user function
called vApplicationStackOverflowHook when this happens.
config FREERTOS_CHECK_STACKOVERFLOW_NONE
bool "No checking"
help
Do not check for stack overflows (configCHECK_FOR_STACK_OVERFLOW=0)
config FREERTOS_CHECK_STACKOVERFLOW_PTRVAL
bool "Check by stack pointer value"
help
Check for stack overflows on each context switch by checking if
the stack pointer is in a valid range. Quick but does not detect
stack overflows that happened between context switches
(configCHECK_FOR_STACK_OVERFLOW=1)
config FREERTOS_CHECK_STACKOVERFLOW_CANARY
bool "Check using canary bytes"
help
Places some magic bytes at the end of the stack area and on each
context switch, check if these bytes are still intact. More thorough
than just checking the pointer, but also slightly slower.
(configCHECK_FOR_STACK_OVERFLOW=2)
endchoice
config FREERTOS_WATCHPOINT_END_OF_STACK
bool "Set a debug watchpoint as a stack overflow check"
default n
help
FreeRTOS can check if a stack has overflown its bounds by checking either the value of
the stack pointer or by checking the integrity of canary bytes. (See FREERTOS_CHECK_STACKOVERFLOW
for more information.) These checks only happen on a context switch, and the situation that caused
the stack overflow may already be long gone by then. This option will use the debug memory
watchpoint 1 (the second one) to allow breaking into the debugger (or panic'ing) as soon as any
of the last 32 bytes on the stack of a task are overwritten. The side effect is that using gdb, you
effectively only have one watchpoint; the 2nd one is overwritten as soon as a task switch happens.
This check only triggers if the stack overflow writes within 4 bytes of the end of the stack, rather than
overshooting further, so it is worth combining this approach with one of the other stack overflow check methods.
When this watchpoint is hit, gdb will stop with a SIGTRAP message. When no JTAG OCD is attached, esp-idf
will panic on an unhandled debug exception.
config FREERTOS_INTERRUPT_BACKTRACE
bool "Enable backtrace from interrupt to task context"
default y
help
If this option is enabled, interrupt stack frame will be modified to
point to the code of the interrupted task as its return address.
This helps the debugger (or the panic handler) show a backtrace from
the interrupt to the task which was interrupted. This also works for
nested interrupts: higer level interrupt stack can be traced back to the
lower level interrupt.
This option adds 4 instructions to the interrupt dispatching code.
config FREERTOS_THREAD_LOCAL_STORAGE_POINTERS
int "Number of thread local storage pointers"
range 1 256
default 1
help
FreeRTOS has the ability to store per-thread pointers in the task
control block. This controls the number of pointers available.
Value 0 turns off this functionality.
If using the LWIP TCP/IP stack (with WiFi or Ethernet), this value must be at least 1. See the
LWIP_THREAD_LOCAL_STORAGE_INDEX config item in LWIP configuration to determine which thread-local-storage
pointer is reserved for LWIP.
choice FREERTOS_ASSERT
prompt "FreeRTOS assertions"
default FREERTOS_ASSERT_FAIL_ABORT
help
Failed FreeRTOS configASSERT() assertions can be configured to
behave in different ways.
config FREERTOS_ASSERT_FAIL_ABORT
bool "abort() on failed assertions"
help
If a FreeRTOS configASSERT() fails, FreeRTOS will abort() and
halt execution. The panic handler can be configured to handle
the outcome of an abort() in different ways.
config FREERTOS_ASSERT_FAIL_PRINT_CONTINUE
bool "Print and continue failed assertions"
help
If a FreeRTOS assertion fails, print it out and continue.
config FREERTOS_ASSERT_DISABLE
bool "Disable FreeRTOS assertions"
help
FreeRTOS configASSERT() will not be compiled into the binary.
endchoice
config FREERTOS_IDLE_TASK_STACKSIZE
int "Idle Task stack size"
range 768 32768
default 1024
help
The idle task has its own stack, sized in bytes. The default size is enough for most uses. Size can be reduced
to 768 bytes if no (or simple) FreeRTOS idle hooks are used. The stack size may need to be increased above the
default if the app installs idle hooks that use a lot of stack memory.
config FREERTOS_ISR_STACKSIZE
int "ISR stack size"
range 1536 32768
default 1536
help
The interrupt handlers have their own stack. The size of the stack can be defined here.
Each processor has its own stack, so the total size occupied will be twice this.
config FREERTOS_LEGACY_HOOKS
bool "Use FreeRTOS legacy hooks"
default n
help
FreeRTOS offers a number of hooks/callback functions that are called when a timer
tick happens, the idle thread runs etc. esp-idf replaces these by runtime registerable
hooks using the esp_register_freertos_xxx_hook system, but for legacy reasons the old
hooks can also still be enabled. Please enable this only if you have code that for some
reason can't be migrated to the esp_register_freertos_xxx_hook system.
if FREERTOS_LEGACY_HOOKS
config FREERTOS_LEGACY_IDLE_HOOK
bool "Enable legacy idle hook"
default n
help
If enabled, FreeRTOS will call a function called vApplicationIdleHook when the idle thread
on a CPU is running. Please make sure your code defines such a function.
config FREERTOS_LEGACY_TICK_HOOK
bool "Enable legacy tick hook"
default n
help
If enabled, FreeRTOS will call a function called vApplicationTickHook when a FreeRTOS
tick is executed. Please make sure your code defines such a function.
endif #FREERTOS_LEGACY_HOOKS
config FREERTOS_MAX_TASK_NAME_LEN
int "Maximum task name length"
range 1 256
default 16
help
Changes the maximum task name length. Each task allocated will
include this many bytes for a task name. Using a shorter value
saves a small amount of RAM, a longer value allows more complex
names.
For most uses, the default of 16 is OK.
config SUPPORT_STATIC_ALLOCATION
bool "Enable FreeRTOS static allocation API"
default n
help
FreeRTOS gives the application writer the ability to instead provide the memory
themselves, allowing the following objects to optionally be created without any
memory being allocated dynamically:
- Tasks
- Software Timers
- Queues
- Event Groups
- Binary Semaphores
- Counting Semaphores
- Recursive Semaphores
- Mutexes
Whether it is preferable to use static or dynamic memory allocation is dependent on
the application, and the preference of the application writer. Both methods have pros
and cons, and both methods can be used within the same RTOS application.
Creating RTOS objects using statically allocated RAM has the benefit of providing the
application writer with more control: RTOS objects can be placed at specific memory locations.
The maximum RAM footprint can be determined at link time, rather than run time.
The application writer does not need to concern themselves with graceful handling of memory allocation failures.
It allows the RTOS to be used in applications that simply don't allow any dynamic memory allocation
(although FreeRTOS includes allocation schemes that can overcome most objections).
config ENABLE_STATIC_TASK_CLEAN_UP_HOOK
bool "Enable static task clean up hook"
depends on SUPPORT_STATIC_ALLOCATION
default n
help
Enable this option to make FreeRTOS call the static task clean up hook when a task is deleted.
Bear in mind that if this option is enabled you will need to implement the following function::
void vPortCleanUpTCB ( void *pxTCB ) {
// place clean up code here
}
config TIMER_TASK_PRIORITY
int "FreeRTOS timer task priority"
range 1 25
default 1
help
The timer service task (primarily) makes use of existing FreeRTOS features, allowing timer
functionality to be added to an application with minimal impact on the size of the application's
executable binary.
Use this constant to define the priority that the timer task will run at.
config TIMER_TASK_STACK_DEPTH
int "FreeRTOS timer task stack size"
range 1536 32768
default 2048
help
The timer service task (primarily) makes use of existing FreeRTOS features, allowing timer
functionality to be added to an application with minimal impact on the size of the application's
executable binary.
Use this constant to define the size (in bytes) of the stack allocated for the timer task.
config TIMER_QUEUE_LENGTH
int "FreeRTOS timer queue length"
range 5 20
default 10
help
FreeRTOS provides a set of timer related API functions. Many of these functions use a standard
FreeRTOS queue to send commands to the timer service task. The queue used for this purpose is
called the 'timer command queue'. The 'timer command queue' is private to the FreeRTOS timer
implementation, and cannot be accessed directly.
For most uses the default value of 10 is OK.
menuconfig FREERTOS_DEBUG_INTERNALS
bool "Debug FreeRTOS internals"
default n
help
Enable this option to show the menu with internal FreeRTOS debugging features.
This option does not change any code by itself, it just shows/hides some options.
if FREERTOS_DEBUG_INTERNALS
config FREERTOS_PORTMUX_DEBUG
bool "Debug portMUX portENTER_CRITICAL/portEXIT_CRITICAL"
depends on FREERTOS_DEBUG_INTERNALS
default n
help
If enabled, debug information (including integrity checks) will be printed
to UART for the port-specific MUX implementation.
if !FREERTOS_UNICORE
config FREERTOS_PORTMUX_DEBUG_RECURSIVE
bool "Debug portMUX Recursion"
depends on FREERTOS_PORTMUX_DEBUG
default n
help
If enabled, additional debug information will be printed for recursive
portMUX usage.
endif #FREERTOS_UNICORE
endif # FREERTOS_DEBUG_INTERNALS
endmenu