mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
2343 lines
81 KiB
C
2343 lines
81 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "esp_attr.h"
|
|
#include "esp_rom_caps.h"
|
|
#include "esp_memory_utils.h"
|
|
#include "esp_sleep.h"
|
|
#include "esp_private/esp_sleep_internal.h"
|
|
#include "esp_private/esp_timer_private.h"
|
|
#include "esp_private/rtc_clk.h"
|
|
#include "esp_private/sleep_event.h"
|
|
#include "esp_private/system_internal.h"
|
|
#include "esp_private/io_mux.h"
|
|
#include "esp_log.h"
|
|
#include "esp_newlib.h"
|
|
#include "esp_timer.h"
|
|
#include "esp_ipc_isr.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "soc/chip_revision.h"
|
|
#include "driver/rtc_io.h"
|
|
#include "hal/efuse_hal.h"
|
|
#include "hal/rtc_io_hal.h"
|
|
#include "hal/clk_tree_hal.h"
|
|
|
|
#if SOC_SLEEP_SYSTIMER_STALL_WORKAROUND
|
|
#include "hal/systimer_ll.h"
|
|
#endif
|
|
|
|
#if SOC_SLEEP_TGWDT_STOP_WORKAROUND
|
|
#include "hal/mwdt_ll.h"
|
|
#include "hal/timer_ll.h"
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_PMU_MODEM_STATE
|
|
#include "esp_private/pm_impl.h"
|
|
#endif
|
|
|
|
#if !SOC_PMU_SUPPORTED
|
|
#include "hal/rtc_cntl_ll.h"
|
|
#endif
|
|
#include "hal/rtc_hal.h"
|
|
|
|
#include "soc/rtc.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "regi2c_ctrl.h" //For `REGI2C_ANA_CALI_PD_WORKAROUND`, temp
|
|
|
|
#include "hal/cache_hal.h"
|
|
#include "hal/cache_ll.h"
|
|
#include "hal/wdt_hal.h"
|
|
#include "hal/uart_hal.h"
|
|
#if SOC_TOUCH_SENSOR_SUPPORTED
|
|
#include "hal/touch_sensor_hal.h"
|
|
#endif
|
|
|
|
#include "sdkconfig.h"
|
|
#include "esp_rom_uart.h"
|
|
#include "esp_rom_sys.h"
|
|
#include "esp_private/brownout.h"
|
|
#include "esp_private/sleep_console.h"
|
|
#include "esp_private/sleep_cpu.h"
|
|
#include "esp_private/sleep_modem.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "esp_private/esp_task_wdt.h"
|
|
#include "esp_private/sar_periph_ctrl.h"
|
|
#include "esp_private/mspi_timing_tuning.h"
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/cache.h"
|
|
#include "esp32/rom/rtc.h"
|
|
#include "esp_private/gpio.h"
|
|
#include "esp_private/sleep_gpio.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/rtc.h"
|
|
#include "soc/extmem_reg.h"
|
|
#include "esp_private/gpio.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/rtc.h"
|
|
#include "esp_private/mspi_timing_tuning.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C2
|
|
#include "esp32c2/rom/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C6
|
|
#include "esp32c6/rom/rtc.h"
|
|
#include "hal/gpio_ll.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C5
|
|
#include "esp32c5/rom/rtc.h"
|
|
#include "hal/gpio_ll.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#include "esp32h2/rom/rtc.h"
|
|
#include "esp32h2/rom/cache.h"
|
|
#include "esp32h2/rom/rtc.h"
|
|
#include "soc/extmem_reg.h"
|
|
#include "hal/gpio_ll.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32P4
|
|
#include "esp32p4/rom/rtc.h"
|
|
#include "hal/gpio_ll.h"
|
|
#endif
|
|
|
|
#if SOC_LP_TIMER_SUPPORTED
|
|
#include "hal/lp_timer_hal.h"
|
|
#endif
|
|
|
|
#if SOC_PMU_SUPPORTED
|
|
#include "esp_private/esp_pmu.h"
|
|
#include "esp_private/sleep_sys_periph.h"
|
|
#include "esp_private/sleep_clock.h"
|
|
#endif
|
|
|
|
#if SOC_PM_RETENTION_SW_TRIGGER_REGDMA
|
|
#include "esp_private/sleep_retention.h"
|
|
#endif
|
|
|
|
// If light sleep time is less than that, don't power down flash
|
|
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
|
|
|
|
// Default waiting time for the software to wait for Flash ready after waking up from sleep
|
|
#define ESP_SLEEP_WAIT_FLASH_READY_DEFAULT_DELAY_US 700
|
|
|
|
// Cycles for RTC Timer clock source (internal oscillator) calibrate
|
|
#define RTC_CLK_SRC_CAL_CYCLES (10)
|
|
#define FAST_CLK_SRC_CAL_CYCLES (2048) /* ~ 127.4 us */
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (212)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (60)
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (147)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (28)
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (382)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (133)
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (105)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (37)
|
|
#elif CONFIG_IDF_TARGET_ESP32C2
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (118)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (9)
|
|
#elif CONFIG_IDF_TARGET_ESP32C6
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (318)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (56)
|
|
#elif CONFIG_IDF_TARGET_ESP32C5 // TODO: [ESP32C5] IDF-8638
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (318)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (56)
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (118)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (9)
|
|
#elif CONFIG_IDF_TARGET_ESP32P4
|
|
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (324)
|
|
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (240)
|
|
#define LDO_POWER_TAKEOVER_PREPARATION_TIME_US (185)
|
|
#endif
|
|
|
|
// Actually costs 80us, using the fastest slow clock 150K calculation takes about 16 ticks
|
|
#define SLEEP_TIMER_ALARM_TO_SLEEP_TICKS (16)
|
|
|
|
#define SLEEP_UART_FLUSH_DONE_TO_SLEEP_US (450)
|
|
|
|
#if SOC_PM_SUPPORT_TOP_PD
|
|
// IDF console uses 8 bits data mode without parity, so each char occupy 8(data)+1(start)+1(stop)=10bits
|
|
#define UART_FLUSH_US_PER_CHAR (10*1000*1000 / CONFIG_ESP_CONSOLE_UART_BAUDRATE)
|
|
#define CONCATENATE_HELPER(x, y) (x##y)
|
|
#define CONCATENATE(x, y) CONCATENATE_HELPER(x, y)
|
|
#define CONSOLE_UART_DEV (&CONCATENATE(UART, CONFIG_ESP_CONSOLE_UART_NUM))
|
|
#endif
|
|
|
|
#define LIGHT_SLEEP_TIME_OVERHEAD_US DEFAULT_HARDWARE_OUT_OVERHEAD_US
|
|
#ifdef CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
|
|
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
|
|
#else
|
|
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
|
|
#endif
|
|
|
|
// Minimal amount of time we can sleep for
|
|
#define LIGHT_SLEEP_MIN_TIME_US 200
|
|
|
|
#define RTC_MODULE_SLEEP_PREPARE_CYCLES (6)
|
|
|
|
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
|
|
(source == value))
|
|
|
|
#define MAX_DSLP_HOOKS 3
|
|
|
|
static esp_deep_sleep_cb_t s_dslp_cb[MAX_DSLP_HOOKS] = {0};
|
|
#if CONFIG_ESP_PHY_ENABLED
|
|
static esp_deep_sleep_cb_t s_dslp_phy_cb[MAX_DSLP_HOOKS] = {0};
|
|
#endif
|
|
|
|
/**
|
|
* Internal structure which holds all requested sleep parameters
|
|
*/
|
|
typedef struct {
|
|
struct {
|
|
esp_sleep_pd_option_t pd_option;
|
|
int16_t refs;
|
|
uint16_t reserved; /* reserved for 4 bytes aligned */
|
|
} domain[ESP_PD_DOMAIN_MAX];
|
|
portMUX_TYPE lock;
|
|
uint64_t sleep_duration;
|
|
uint32_t wakeup_triggers : 15;
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
uint32_t ext1_trigger_mode : 22; // 22 is the maximum RTCIO number in all chips
|
|
uint32_t ext1_rtc_gpio_mask : 22;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
uint32_t ext0_trigger_level : 1;
|
|
uint32_t ext0_rtc_gpio_num : 5;
|
|
#endif
|
|
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
|
|
uint32_t gpio_wakeup_mask : SOC_GPIO_DEEP_SLEEP_WAKE_SUPPORTED_PIN_CNT; // Only RTC_GPIO supports wakeup deepsleep
|
|
uint32_t gpio_trigger_mode : SOC_GPIO_DEEP_SLEEP_WAKE_SUPPORTED_PIN_CNT;
|
|
#endif
|
|
uint32_t sleep_time_adjustment;
|
|
uint32_t ccount_ticks_record;
|
|
uint32_t sleep_time_overhead_out;
|
|
uint32_t rtc_clk_cal_period;
|
|
uint32_t fast_clk_cal_period;
|
|
uint64_t rtc_ticks_at_sleep_start;
|
|
#if SOC_DCDC_SUPPORTED
|
|
uint64_t rtc_ticks_at_ldo_prepare;
|
|
#endif
|
|
} sleep_config_t;
|
|
|
|
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
static esp_sleep_context_t *s_sleep_ctx = NULL;
|
|
|
|
void esp_sleep_set_sleep_context(esp_sleep_context_t *sleep_ctx)
|
|
{
|
|
s_sleep_ctx = sleep_ctx;
|
|
}
|
|
#endif
|
|
|
|
static uint32_t s_lightsleep_cnt = 0;
|
|
|
|
_Static_assert(22 >= SOC_RTCIO_PIN_COUNT, "Chip has more RTCIOs than 22, should increase ext1_rtc_gpio_mask field size");
|
|
|
|
static sleep_config_t s_config = {
|
|
.domain = {
|
|
[0 ... ESP_PD_DOMAIN_MAX - 1] = {
|
|
.pd_option = ESP_PD_OPTION_AUTO,
|
|
.refs = 0
|
|
}
|
|
},
|
|
.lock = portMUX_INITIALIZER_UNLOCKED,
|
|
.ccount_ticks_record = 0,
|
|
.sleep_time_overhead_out = DEFAULT_SLEEP_OUT_OVERHEAD_US,
|
|
.wakeup_triggers = 0
|
|
};
|
|
|
|
/* Internal variable used to track if light sleep wakeup sources are to be
|
|
expected when determining wakeup cause. */
|
|
static bool s_light_sleep_wakeup = false;
|
|
|
|
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
|
|
is not thread-safe, so we need to disable interrupts before going to deep sleep. */
|
|
static portMUX_TYPE spinlock_rtc_deep_sleep = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
static const char *TAG = "sleep";
|
|
static RTC_FAST_ATTR bool s_adc_tsen_enabled = false;
|
|
//in this mode, 2uA is saved, but RTC memory can't use at high temperature, and RTCIO can't be used as INPUT.
|
|
static bool s_ultra_low_enabled = false;
|
|
|
|
static bool s_periph_use_8m_flag = false;
|
|
|
|
void esp_sleep_periph_use_8m(bool use_or_not)
|
|
{
|
|
s_periph_use_8m_flag = use_or_not;
|
|
}
|
|
|
|
static uint32_t get_power_down_flags(void);
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
static void ext0_wakeup_prepare(void);
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
static void ext1_wakeup_prepare(void);
|
|
#endif
|
|
static esp_err_t timer_wakeup_prepare(int64_t sleep_duration);
|
|
#if SOC_TOUCH_SENSOR_SUPPORTED && SOC_TOUCH_SENSOR_VERSION != 1
|
|
static void touch_wakeup_prepare(void);
|
|
#endif
|
|
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
|
|
static void gpio_deep_sleep_wakeup_prepare(void);
|
|
#endif
|
|
|
|
#if ESP_ROM_SUPPORT_DEEP_SLEEP_WAKEUP_STUB && SOC_DEEP_SLEEP_SUPPORTED
|
|
#if SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
static RTC_FAST_ATTR esp_deep_sleep_wake_stub_fn_t wake_stub_fn_handler = NULL;
|
|
|
|
static void RTC_IRAM_ATTR __attribute__((used, noinline)) esp_wake_stub_start(void)
|
|
{
|
|
if (wake_stub_fn_handler) {
|
|
(*wake_stub_fn_handler)();
|
|
}
|
|
}
|
|
|
|
/* We must have a default deep sleep wake stub entry function, which must be
|
|
* located at the start address of the RTC fast memory, and its implementation
|
|
* must be simple enough to ensure that there is no literal data before the
|
|
* wake stub entry, otherwise, the literal data before the wake stub entry
|
|
* will not be CRC checked. */
|
|
static void __attribute__((section(".rtc.entry.text"))) esp_wake_stub_entry(void)
|
|
{
|
|
#define _SYM2STR(s) # s
|
|
#define SYM2STR(s) _SYM2STR(s)
|
|
|
|
#ifdef __riscv
|
|
__asm__ __volatile__ (
|
|
"addi sp, sp, -16 \n"
|
|
"sw ra, 0(sp) \n"
|
|
"jal ra, " SYM2STR(esp_wake_stub_start) "\n"
|
|
"lw ra, 0(sp) \n"
|
|
"addi sp, sp, 16 \n"
|
|
);
|
|
#else
|
|
// call4 has a larger effective addressing range (-524284 to 524288 bytes),
|
|
// which is sufficient for instruction addressing in RTC fast memory.
|
|
__asm__ __volatile__ ("call4 " SYM2STR(esp_wake_stub_start) "\n");
|
|
#endif
|
|
|
|
}
|
|
|
|
void RTC_IRAM_ATTR esp_set_deep_sleep_wake_stub_default_entry(void)
|
|
{
|
|
extern char _rtc_text_start[];
|
|
#if CONFIG_ESP32S3_RTCDATA_IN_FAST_MEM
|
|
extern char _rtc_noinit_end[];
|
|
size_t rtc_fast_length = (size_t)_rtc_noinit_end - (size_t)_rtc_text_start;
|
|
#else
|
|
extern char _rtc_force_fast_end[];
|
|
size_t rtc_fast_length = (size_t)_rtc_force_fast_end - (size_t)_rtc_text_start;
|
|
#endif
|
|
esp_rom_set_rtc_wake_addr((esp_rom_wake_func_t)esp_wake_stub_entry, rtc_fast_length);
|
|
}
|
|
#endif // SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
|
|
/* Wake from deep sleep stub
|
|
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
|
|
*/
|
|
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
esp_deep_sleep_wake_stub_fn_t stub_ptr = wake_stub_fn_handler;
|
|
#else
|
|
esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG);
|
|
#endif
|
|
if (!esp_ptr_executable(stub_ptr)) {
|
|
return NULL;
|
|
}
|
|
return stub_ptr;
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* APP core of esp32 can't access to RTC FAST MEMORY, do not define it with RTC_IRAM_ATTR */
|
|
void
|
|
#else
|
|
void RTC_IRAM_ATTR
|
|
#endif
|
|
esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
|
|
{
|
|
#if SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
wake_stub_fn_handler = new_stub;
|
|
#else
|
|
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
|
|
#endif
|
|
}
|
|
|
|
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void)
|
|
{
|
|
/* Clear MMU for CPU 0 */
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
|
|
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
|
|
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
|
|
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
|
|
#if CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY > 0
|
|
// ROM code has not started yet, so we need to set delay factor
|
|
// used by esp_rom_delay_us first.
|
|
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
|
|
// Time from VDD_SDIO power up to first flash read in ROM code is 700 us,
|
|
// for some flash chips is not sufficient, this delay is configured in menuconfig,
|
|
// it can be used to give the flash chip some extra time to become ready.
|
|
// For later chips, we have EFUSE_FLASH_TPUW field to configure it and do
|
|
// this delay in the ROM.
|
|
esp_rom_delay_us(CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY);
|
|
#endif
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
REG_SET_BIT(EXTMEM_CACHE_DBG_INT_ENA_REG, EXTMEM_CACHE_DBG_EN);
|
|
#endif
|
|
}
|
|
|
|
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
|
|
#endif // SOC_RTC_FAST_MEM_SUPPORTED
|
|
|
|
void esp_deep_sleep(uint64_t time_in_us)
|
|
{
|
|
esp_sleep_enable_timer_wakeup(time_in_us);
|
|
esp_deep_sleep_start();
|
|
}
|
|
|
|
esp_err_t esp_deep_sleep_try(uint64_t time_in_us)
|
|
{
|
|
esp_sleep_enable_timer_wakeup(time_in_us);
|
|
return esp_deep_sleep_try_to_start();
|
|
}
|
|
|
|
static esp_err_t s_sleep_hook_register(esp_deep_sleep_cb_t new_cb, esp_deep_sleep_cb_t s_cb_array[MAX_DSLP_HOOKS])
|
|
{
|
|
portENTER_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
for (int n = 0; n < MAX_DSLP_HOOKS; n++) {
|
|
if (s_cb_array[n]==NULL || s_cb_array[n]==new_cb) {
|
|
s_cb_array[n]=new_cb;
|
|
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
return ESP_OK;
|
|
}
|
|
}
|
|
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
ESP_LOGE(TAG, "Registered deepsleep callbacks exceeds MAX_DSLP_HOOKS");
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
static void s_sleep_hook_deregister(esp_deep_sleep_cb_t old_cb, esp_deep_sleep_cb_t s_cb_array[MAX_DSLP_HOOKS])
|
|
{
|
|
portENTER_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
for (int n = 0; n < MAX_DSLP_HOOKS; n++) {
|
|
if(s_cb_array[n] == old_cb) {
|
|
s_cb_array[n] = NULL;
|
|
}
|
|
}
|
|
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
}
|
|
|
|
esp_err_t esp_deep_sleep_register_hook(esp_deep_sleep_cb_t new_dslp_cb)
|
|
{
|
|
return s_sleep_hook_register(new_dslp_cb, s_dslp_cb);
|
|
}
|
|
|
|
void esp_deep_sleep_deregister_hook(esp_deep_sleep_cb_t old_dslp_cb)
|
|
{
|
|
s_sleep_hook_deregister(old_dslp_cb, s_dslp_cb);
|
|
}
|
|
|
|
#if CONFIG_ESP_PHY_ENABLED
|
|
esp_err_t esp_deep_sleep_register_phy_hook(esp_deep_sleep_cb_t new_dslp_cb)
|
|
{
|
|
return s_sleep_hook_register(new_dslp_cb, s_dslp_phy_cb);
|
|
}
|
|
|
|
void esp_deep_sleep_deregister_phy_hook(esp_deep_sleep_cb_t old_dslp_cb)
|
|
{
|
|
s_sleep_hook_deregister(old_dslp_cb, s_dslp_phy_cb);
|
|
}
|
|
|
|
static void s_do_deep_sleep_phy_callback(void)
|
|
{
|
|
for (int n = 0; n < MAX_DSLP_HOOKS; n++) {
|
|
if (s_dslp_phy_cb[n] != NULL) {
|
|
s_dslp_phy_cb[n]();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int s_cache_suspend_cnt = 0;
|
|
|
|
// Must be called from critical sections.
|
|
static void IRAM_ATTR suspend_cache(void) {
|
|
s_cache_suspend_cnt++;
|
|
if (s_cache_suspend_cnt == 1) {
|
|
cache_hal_suspend(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
|
|
}
|
|
}
|
|
|
|
// Must be called from critical sections.
|
|
static void IRAM_ATTR resume_cache(void) {
|
|
s_cache_suspend_cnt--;
|
|
assert(s_cache_suspend_cnt >= 0 && DRAM_STR("cache resume doesn't match suspend ops"));
|
|
if (s_cache_suspend_cnt == 0) {
|
|
cache_hal_resume(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
|
|
}
|
|
}
|
|
|
|
#if SOC_SLEEP_TGWDT_STOP_WORKAROUND
|
|
static uint32_t s_stopped_tgwdt_bmap = 0;
|
|
#endif
|
|
|
|
// Must be called from critical sections.
|
|
static void IRAM_ATTR suspend_timers(uint32_t pd_flags) {
|
|
if (!(pd_flags & RTC_SLEEP_PD_XTAL)) {
|
|
#if SOC_SLEEP_TGWDT_STOP_WORKAROUND
|
|
/* If timegroup implemented task watchdog or interrupt watchdog is running, we have to stop it. */
|
|
for (uint32_t tg_num = 0; tg_num < SOC_TIMER_GROUPS; ++tg_num) {
|
|
if (mwdt_ll_check_if_enabled(TIMER_LL_GET_HW(tg_num))) {
|
|
mwdt_ll_write_protect_disable(TIMER_LL_GET_HW(tg_num));
|
|
mwdt_ll_disable(TIMER_LL_GET_HW(tg_num));
|
|
mwdt_ll_write_protect_enable(TIMER_LL_GET_HW(tg_num));
|
|
s_stopped_tgwdt_bmap |= BIT(tg_num);
|
|
}
|
|
}
|
|
#endif
|
|
#if SOC_SLEEP_SYSTIMER_STALL_WORKAROUND
|
|
for (uint32_t counter_id = 0; counter_id < SOC_SYSTIMER_COUNTER_NUM; ++counter_id) {
|
|
systimer_ll_enable_counter(&SYSTIMER, counter_id, false);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Must be called from critical sections.
|
|
static void IRAM_ATTR resume_timers(uint32_t pd_flags) {
|
|
if (!(pd_flags & RTC_SLEEP_PD_XTAL)) {
|
|
#if SOC_SLEEP_SYSTIMER_STALL_WORKAROUND
|
|
for (uint32_t counter_id = 0; counter_id < SOC_SYSTIMER_COUNTER_NUM; ++counter_id) {
|
|
systimer_ll_enable_counter(&SYSTIMER, counter_id, true);
|
|
}
|
|
#endif
|
|
#if SOC_SLEEP_TGWDT_STOP_WORKAROUND
|
|
for (uint32_t tg_num = 0; tg_num < SOC_TIMER_GROUPS; ++tg_num) {
|
|
if (s_stopped_tgwdt_bmap & BIT(tg_num)) {
|
|
mwdt_ll_write_protect_disable(TIMER_LL_GET_HW(tg_num));
|
|
mwdt_ll_enable(TIMER_LL_GET_HW(tg_num));
|
|
mwdt_ll_write_protect_enable(TIMER_LL_GET_HW(tg_num));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// [refactor-todo] provide target logic for body of uart functions below
|
|
static void IRAM_ATTR flush_uarts(void)
|
|
{
|
|
for (int i = 0; i < SOC_UART_HP_NUM; ++i) {
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
esp_rom_output_tx_wait_idle(i);
|
|
#else
|
|
if (uart_ll_is_enabled(i)) {
|
|
esp_rom_output_tx_wait_idle(i);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static uint32_t s_suspended_uarts_bmap = 0;
|
|
|
|
/**
|
|
* Suspend enabled uarts and return suspended uarts bit map.
|
|
* Must be called from critical sections.
|
|
*/
|
|
FORCE_INLINE_ATTR void suspend_uarts(void)
|
|
{
|
|
s_suspended_uarts_bmap = 0;
|
|
for (int i = 0; i < SOC_UART_HP_NUM; ++i) {
|
|
#ifndef CONFIG_IDF_TARGET_ESP32
|
|
if (!uart_ll_is_enabled(i)) {
|
|
continue;
|
|
}
|
|
#endif
|
|
uart_ll_force_xoff(i);
|
|
s_suspended_uarts_bmap |= BIT(i);
|
|
#if SOC_UART_SUPPORT_FSM_TX_WAIT_SEND
|
|
uint32_t uart_fsm = 0;
|
|
do {
|
|
uart_fsm = uart_ll_get_tx_fsm_status(i);
|
|
} while (!(uart_fsm == UART_LL_FSM_IDLE || uart_fsm == UART_LL_FSM_TX_WAIT_SEND));
|
|
#else
|
|
while (uart_ll_get_tx_fsm_status(i) != 0) {}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Must be called from critical sections
|
|
FORCE_INLINE_ATTR void resume_uarts(void)
|
|
{
|
|
for (int i = 0; i < SOC_UART_HP_NUM; ++i) {
|
|
if (s_suspended_uarts_bmap & 0x1) {
|
|
uart_ll_force_xon(i);
|
|
}
|
|
s_suspended_uarts_bmap >>= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
UART prepare strategy in sleep:
|
|
Deepsleep : flush the fifo before enter sleep to avoid data loss
|
|
|
|
Lightsleep:
|
|
Chips not support PD_TOP: Suspend uart before cpu freq switch
|
|
|
|
Chips support PD_TOP:
|
|
For sleep which will not power down the TOP domain (uart belongs it), we can just suspend the UART.
|
|
|
|
For sleep which will power down the TOP domain, we need to consider whether the uart flushing will
|
|
block the sleep process and cause the rtos target tick to be missed upon waking up. It's need to
|
|
estimate the flush time based on the number of bytes in the uart FIFO, if the predicted flush
|
|
completion time has exceeded the wakeup time, we should abandon the flush, skip the sleep and
|
|
return ESP_ERR_SLEEP_REJECT.
|
|
*/
|
|
FORCE_INLINE_ATTR bool light_sleep_uart_prepare(uint32_t pd_flags, int64_t sleep_duration)
|
|
{
|
|
bool should_skip_sleep = false;
|
|
#if !SOC_PM_SUPPORT_TOP_PD || !CONFIG_ESP_CONSOLE_UART
|
|
suspend_uarts();
|
|
#else
|
|
#ifdef CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
|
|
#define FORCE_FLUSH_CONSOLE_UART 1
|
|
#else
|
|
#define FORCE_FLUSH_CONSOLE_UART 0
|
|
#endif
|
|
if (FORCE_FLUSH_CONSOLE_UART || (pd_flags & PMU_SLEEP_PD_TOP)) {
|
|
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
|
|
// +1 is for cover the last character flush time
|
|
(sleep_duration < (int64_t)((UART_LL_FIFO_DEF_LEN - uart_ll_get_txfifo_len(CONSOLE_UART_DEV) + 1) * UART_FLUSH_US_PER_CHAR) + SLEEP_UART_FLUSH_DONE_TO_SLEEP_US)) {
|
|
should_skip_sleep = true;
|
|
} else {
|
|
/* Only flush the uart_num configured to console, the transmission integrity of
|
|
other uarts is guaranteed by the UART driver */
|
|
if (CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM != -1) {
|
|
esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
|
|
}
|
|
}
|
|
} else {
|
|
suspend_uarts();
|
|
}
|
|
#endif
|
|
return should_skip_sleep;
|
|
}
|
|
|
|
/**
|
|
* These save-restore workaround should be moved to lower layer
|
|
*/
|
|
FORCE_INLINE_ATTR void misc_modules_sleep_prepare(bool deep_sleep)
|
|
{
|
|
if (deep_sleep){
|
|
for (int n = 0; n < MAX_DSLP_HOOKS; n++) {
|
|
if (s_dslp_cb[n] != NULL) {
|
|
s_dslp_cb[n]();
|
|
}
|
|
}
|
|
} else {
|
|
#if SOC_USB_SERIAL_JTAG_SUPPORTED && !SOC_USB_SERIAL_JTAG_SUPPORT_LIGHT_SLEEP
|
|
// Only avoid USJ pad leakage here, USB OTG pad leakage is prevented through USB Host driver.
|
|
sleep_console_usj_pad_backup_and_disable();
|
|
#endif
|
|
#if CONFIG_MAC_BB_PD
|
|
mac_bb_power_down_cb_execute();
|
|
#endif
|
|
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
|
|
gpio_sleep_mode_config_apply();
|
|
#endif
|
|
#if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_CPU_RETENTION_BY_RTCCNTL
|
|
sleep_enable_cpu_retention();
|
|
#endif
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
regi2c_analog_cali_reg_read();
|
|
#endif
|
|
}
|
|
|
|
#if !CONFIG_IDF_TARGET_ESP32P4
|
|
// TODO: IDF-7370
|
|
if (!(deep_sleep && s_adc_tsen_enabled)){
|
|
sar_periph_ctrl_power_disable();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* These save-restore workaround should be moved to lower layer
|
|
*/
|
|
FORCE_INLINE_ATTR void misc_modules_wake_prepare(uint32_t pd_flags)
|
|
{
|
|
#if CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP
|
|
if (pd_flags & PMU_SLEEP_PD_TOP) {
|
|
// There is no driver to manage the flashboot watchdog, and it is definitely be in off state when
|
|
// the system is running, after waking up from pd_top sleep, shut it down by software here.
|
|
wdt_hal_context_t mwdt_ctx = {.inst = WDT_MWDT0, .mwdt_dev = &TIMERG0};
|
|
wdt_hal_write_protect_disable(&mwdt_ctx);
|
|
wdt_hal_set_flashboot_en(&mwdt_ctx, false);
|
|
wdt_hal_write_protect_enable(&mwdt_ctx);
|
|
}
|
|
#endif
|
|
|
|
#if SOC_USB_SERIAL_JTAG_SUPPORTED && !SOC_USB_SERIAL_JTAG_SUPPORT_LIGHT_SLEEP
|
|
sleep_console_usj_pad_restore();
|
|
#endif
|
|
sar_periph_ctrl_power_enable();
|
|
#if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_CPU_RETENTION_BY_RTCCNTL
|
|
sleep_disable_cpu_retention();
|
|
#endif
|
|
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
|
|
gpio_sleep_mode_config_unapply();
|
|
#endif
|
|
#if CONFIG_MAC_BB_PD
|
|
mac_bb_power_up_cb_execute();
|
|
#endif
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
regi2c_analog_cali_reg_write();
|
|
#endif
|
|
}
|
|
|
|
static IRAM_ATTR void sleep_low_power_clock_calibration(bool is_dslp)
|
|
{
|
|
// Calibrate rtc slow clock
|
|
#ifdef CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
|
|
if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
|
|
uint64_t time_per_us = 1000000ULL;
|
|
s_config.rtc_clk_cal_period = (time_per_us << RTC_CLK_CAL_FRACT) / rtc_clk_slow_freq_get_hz();
|
|
} else {
|
|
// If the external 32 kHz XTAL does not exist, use the internal 150 kHz RC oscillator
|
|
// as the RTC slow clock source.
|
|
s_config.rtc_clk_cal_period = rtc_clk_cal(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
|
|
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
|
|
}
|
|
#elif CONFIG_RTC_CLK_SRC_INT_RC && CONFIG_IDF_TARGET_ESP32S2
|
|
s_config.rtc_clk_cal_period = rtc_clk_cal_cycling(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
|
|
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
|
|
#else
|
|
#if CONFIG_PM_ENABLE
|
|
if ((s_lightsleep_cnt % CONFIG_PM_LIGHTSLEEP_RTC_OSC_CAL_INTERVAL == 0) || is_dslp)
|
|
#endif
|
|
{
|
|
s_config.rtc_clk_cal_period = rtc_clk_cal(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
|
|
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
|
|
}
|
|
#endif
|
|
|
|
// Calibrate rtc fast clock, only PMU supported chips sleep process is needed.
|
|
#if SOC_PMU_SUPPORTED
|
|
#if CONFIG_PM_ENABLE
|
|
if ((s_lightsleep_cnt % CONFIG_PM_LIGHTSLEEP_RTC_OSC_CAL_INTERVAL == 0) || is_dslp)
|
|
#endif
|
|
{
|
|
#if !CONFIG_IDF_TARGET_ESP32C5_BETA3_VERSION
|
|
s_config.fast_clk_cal_period = rtc_clk_cal(RTC_CAL_RC_FAST, FAST_CLK_SRC_CAL_CYCLES);
|
|
#else
|
|
s_config.fast_clk_cal_period = 0x8000;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
inline static uint32_t call_rtc_sleep_start(uint32_t reject_triggers, uint32_t lslp_mem_inf_fpu, bool dslp);
|
|
|
|
static esp_err_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags, esp_sleep_mode_t mode, bool allow_sleep_rejection)
|
|
{
|
|
// Stop UART output so that output is not lost due to APB frequency change.
|
|
// For light sleep, suspend UART output — it will resume after wakeup.
|
|
// For deep sleep, wait for the contents of UART FIFO to be sent.
|
|
bool deep_sleep = (mode == ESP_SLEEP_MODE_DEEP_SLEEP);
|
|
bool should_skip_sleep = false;
|
|
|
|
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
|
|
|
|
#if SOC_RTC_SLOW_CLK_SUPPORT_RC_FAST_D256
|
|
//Keep the RTC8M_CLK on if RTC clock is rc_fast_d256.
|
|
bool rtc_using_8md256 = (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256);
|
|
#else
|
|
bool rtc_using_8md256 = false;
|
|
#endif
|
|
//Keep the RTC8M_CLK on if the ledc low-speed channel is clocked by RTC8M_CLK in lightsleep mode
|
|
bool periph_using_8m = !deep_sleep && s_periph_use_8m_flag;
|
|
|
|
//Override user-configured power modes.
|
|
if (rtc_using_8md256 || periph_using_8m) {
|
|
pd_flags &= ~RTC_SLEEP_PD_INT_8M;
|
|
}
|
|
|
|
// Sleep UART prepare
|
|
if (deep_sleep) {
|
|
flush_uarts();
|
|
} else {
|
|
should_skip_sleep = light_sleep_uart_prepare(pd_flags, sleep_duration);
|
|
}
|
|
|
|
#if CONFIG_ESP_PHY_ENABLED
|
|
// Do deep-sleep PHY related callback, which need to be executed when the PLL clock is exists.
|
|
// For light-sleep, PHY state is managed by the upper layer of the wifi/bt protocol stack.
|
|
if (deep_sleep) {
|
|
s_do_deep_sleep_phy_callback();
|
|
}
|
|
#endif
|
|
|
|
// Will switch to XTAL turn down MSPI speed
|
|
mspi_timing_change_speed_mode_cache_safe(true);
|
|
|
|
#if SOC_PM_RETENTION_SW_TRIGGER_REGDMA
|
|
if (!deep_sleep && (pd_flags & PMU_SLEEP_PD_TOP)) {
|
|
sleep_retention_do_system_retention(true);
|
|
}
|
|
#endif
|
|
|
|
// Save current frequency and switch to XTAL
|
|
rtc_cpu_freq_config_t cpu_freq_config;
|
|
rtc_clk_cpu_freq_get_config(&cpu_freq_config);
|
|
rtc_clk_cpu_freq_set_xtal();
|
|
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
// Configure pins for external wakeup
|
|
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
|
|
ext0_wakeup_prepare();
|
|
}
|
|
// for !(s_config.wakeup_triggers & RTC_EXT0_TRIG_EN), ext0 wakeup will be turned off in hardware in the real call to sleep
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
|
|
ext1_wakeup_prepare();
|
|
}
|
|
// for !(s_config.wakeup_triggers & RTC_EXT1_TRIG_EN), ext1 wakeup will be turned off in hardware in the real call to sleep
|
|
#endif
|
|
|
|
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
|
|
if (deep_sleep && (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN)) {
|
|
gpio_deep_sleep_wakeup_prepare();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_ULP_COPROC_ENABLED
|
|
// Enable ULP wakeup
|
|
#if CONFIG_ULP_COPROC_TYPE_FSM
|
|
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
|
|
#elif CONFIG_ULP_COPROC_TYPE_RISCV
|
|
if (s_config.wakeup_triggers & (RTC_COCPU_TRIG_EN | RTC_COCPU_TRAP_TRIG_EN)) {
|
|
#elif CONFIG_ULP_COPROC_TYPE_LP_CORE
|
|
if (s_config.wakeup_triggers & RTC_LP_CORE_TRIG_EN) {
|
|
#endif
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
rtc_hal_ulp_wakeup_enable();
|
|
#elif CONFIG_ULP_COPROC_TYPE_LP_CORE
|
|
pmu_ll_hp_clear_sw_intr_status(&PMU);
|
|
#else
|
|
rtc_hal_ulp_int_clear();
|
|
#endif
|
|
}
|
|
#endif // CONFIG_ULP_COPROC_ENABLED
|
|
|
|
misc_modules_sleep_prepare(deep_sleep);
|
|
|
|
#if SOC_TOUCH_SENSOR_VERSION >= 2
|
|
if (deep_sleep) {
|
|
if (s_config.wakeup_triggers & RTC_TOUCH_TRIG_EN) {
|
|
touch_wakeup_prepare();
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
/* Workaround: In deep sleep, for ESP32S2, Power down the RTC_PERIPH will change the slope configuration of Touch sensor sleep pad.
|
|
* The configuration change will change the reading of the sleep pad, which will cause the touch wake-up sensor to trigger falsely.
|
|
*/
|
|
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
|
|
#endif
|
|
}
|
|
} else {
|
|
/* In light sleep, the RTC_PERIPH power domain should be in the power-on state (Power on the touch circuit in light sleep),
|
|
* otherwise the touch sensor FSM will be cleared, causing touch sensor false triggering.
|
|
*/
|
|
#if SOC_TOUCH_SENSOR_VERSION == 3
|
|
bool keep_rtc_power_on = touch_ll_is_fsm_repeated_timer_enabled();
|
|
#else
|
|
bool keep_rtc_power_on = touch_ll_get_fsm_state();
|
|
#endif
|
|
if (keep_rtc_power_on) { // Check if the touch sensor is working properly.
|
|
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
|
|
}
|
|
}
|
|
#elif CONFIG_IDF_TARGET_ESP32P4
|
|
/* Due to esp32p4 eco0 hardware bug, if LP peripheral power domain is powerdowned in sleep, there will be a possibility of
|
|
triggering the EFUSE_CRC reset, so disable the power-down of this power domain on lightsleep for ECO0 version. */
|
|
if (!ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 1)) {
|
|
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
|
|
}
|
|
#endif
|
|
|
|
uint32_t reject_triggers = allow_sleep_rejection ? (s_config.wakeup_triggers & RTC_SLEEP_REJECT_MASK) : 0;
|
|
|
|
if (!deep_sleep) {
|
|
/* Enable sleep reject for faster return from this function,
|
|
* in case the wakeup is already triggered.
|
|
*/
|
|
reject_triggers |= sleep_modem_reject_triggers();
|
|
}
|
|
|
|
//Append some flags in addition to power domains
|
|
uint32_t sleep_flags = pd_flags;
|
|
if (s_adc_tsen_enabled) {
|
|
sleep_flags |= RTC_SLEEP_USE_ADC_TESEN_MONITOR;
|
|
}
|
|
if (!s_ultra_low_enabled) {
|
|
sleep_flags |= RTC_SLEEP_NO_ULTRA_LOW;
|
|
}
|
|
if (periph_using_8m) {
|
|
sleep_flags |= RTC_SLEEP_DIG_USE_8M;
|
|
}
|
|
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->sleep_flags = sleep_flags;
|
|
}
|
|
#endif
|
|
|
|
// Enter sleep
|
|
esp_err_t result;
|
|
#if SOC_PMU_SUPPORTED
|
|
|
|
#if SOC_DCDC_SUPPORTED
|
|
#if CONFIG_ESP_SLEEP_KEEP_DCDC_ALWAYS_ON
|
|
if (!deep_sleep) {
|
|
// Keep DCDC always on during light sleep, no need to adjust LDO voltage.
|
|
} else
|
|
#endif
|
|
{
|
|
s_config.rtc_ticks_at_ldo_prepare = rtc_time_get();
|
|
pmu_sleep_increase_ldo_volt();
|
|
}
|
|
#endif
|
|
|
|
pmu_sleep_config_t config;
|
|
pmu_sleep_init(pmu_sleep_config_default(&config, sleep_flags, s_config.sleep_time_adjustment,
|
|
s_config.rtc_clk_cal_period, s_config.fast_clk_cal_period,
|
|
deep_sleep), deep_sleep);
|
|
#else
|
|
rtc_sleep_config_t config;
|
|
rtc_sleep_get_default_config(sleep_flags, &config);
|
|
rtc_sleep_init(config);
|
|
|
|
// Set state machine time for light sleep
|
|
if (!deep_sleep) {
|
|
rtc_sleep_low_init(s_config.rtc_clk_cal_period);
|
|
}
|
|
#endif
|
|
|
|
// Configure timer wakeup
|
|
if (!should_skip_sleep && (s_config.wakeup_triggers & RTC_TIMER_TRIG_EN)) {
|
|
if (timer_wakeup_prepare(sleep_duration) != ESP_OK) {
|
|
should_skip_sleep = allow_sleep_rejection ? true : false;
|
|
}
|
|
}
|
|
|
|
|
|
if (should_skip_sleep) {
|
|
result = ESP_ERR_SLEEP_REJECT;
|
|
#if ESP_SLEEP_POWER_DOWN_CPU && !CONFIG_FREERTOS_UNICORE && SOC_PM_CPU_RETENTION_BY_SW
|
|
esp_sleep_cpu_skip_retention();
|
|
#endif
|
|
} else {
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->wakeup_triggers = s_config.wakeup_triggers;
|
|
}
|
|
#endif
|
|
if (deep_sleep) {
|
|
#if !SOC_GPIO_SUPPORT_HOLD_SINGLE_IO_IN_DSLP
|
|
esp_sleep_isolate_digital_gpio();
|
|
#endif
|
|
|
|
#if ESP_ROM_SUPPORT_DEEP_SLEEP_WAKEUP_STUB && SOC_DEEP_SLEEP_SUPPORTED
|
|
#if SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
esp_set_deep_sleep_wake_stub_default_entry();
|
|
#elif !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP && SOC_RTC_FAST_MEM_SUPPORTED
|
|
/* If not possible stack is in RTC FAST memory, use the ROM function to calculate the CRC and save ~140 bytes IRAM */
|
|
set_rtc_memory_crc();
|
|
#endif // SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY
|
|
#endif
|
|
|
|
// Enter Deep Sleep
|
|
#if!ESP_ROM_SUPPORT_DEEP_SLEEP_WAKEUP_STUB || SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY || !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
|
|
#if SOC_PMU_SUPPORTED
|
|
result = call_rtc_sleep_start(reject_triggers, config.power.hp_sys.dig_power.mem_dslp, deep_sleep);
|
|
#else
|
|
result = call_rtc_sleep_start(reject_triggers, config.lslp_mem_inf_fpu, deep_sleep);
|
|
#endif
|
|
#else
|
|
/* Otherwise, need to call the dedicated soc function for this */
|
|
result = rtc_deep_sleep_start(s_config.wakeup_triggers, reject_triggers);
|
|
#endif
|
|
} else {
|
|
suspend_timers(pd_flags);
|
|
/* Cache Suspend 1: will wait cache idle in cache suspend */
|
|
suspend_cache();
|
|
/* On esp32c6, only the lp_aon pad hold function can only hold the GPIO state in the active mode.
|
|
In order to avoid the leakage of the SPI cs pin, hold it here */
|
|
#if (CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP && CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND)
|
|
#if !CONFIG_IDF_TARGET_ESP32H2 // ESP32H2 TODO IDF-7359
|
|
if(!(pd_flags & RTC_SLEEP_PD_VDDSDIO)) {
|
|
/* Cache suspend also means SPI bus IDLE, then we can hold SPI CS pin safely */
|
|
gpio_ll_hold_en(&GPIO, SPI_CS0_GPIO_NUM);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if SOC_DCDC_SUPPORTED
|
|
#if CONFIG_ESP_SLEEP_KEEP_DCDC_ALWAYS_ON
|
|
if (!deep_sleep) {
|
|
// Keep DCDC always on during light sleep, no need to adjust LDO voltage.
|
|
} else
|
|
#endif
|
|
{
|
|
uint64_t ldo_increased_us = rtc_time_slowclk_to_us(rtc_time_get() - s_config.rtc_ticks_at_ldo_prepare, s_config.rtc_clk_cal_period);
|
|
if (ldo_increased_us < LDO_POWER_TAKEOVER_PREPARATION_TIME_US) {
|
|
esp_rom_delay_us(LDO_POWER_TAKEOVER_PREPARATION_TIME_US - ldo_increased_us);
|
|
}
|
|
pmu_sleep_shutdown_dcdc();
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PMU_SUPPORTED
|
|
#if SOC_PM_CPU_RETENTION_BY_SW && ESP_SLEEP_POWER_DOWN_CPU
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_HW_GOTO_SLEEP, (void *)0);
|
|
if (pd_flags & (PMU_SLEEP_PD_CPU | PMU_SLEEP_PD_TOP)) {
|
|
result = esp_sleep_cpu_retention(pmu_sleep_start, s_config.wakeup_triggers, reject_triggers, config.power.hp_sys.dig_power.mem_dslp, deep_sleep);
|
|
} else
|
|
#endif
|
|
{
|
|
#if !CONFIG_FREERTOS_UNICORE && ESP_SLEEP_POWER_DOWN_CPU && SOC_PM_CPU_RETENTION_BY_SW
|
|
// Skip smp retention if CPU power domain power-down is not allowed
|
|
esp_sleep_cpu_skip_retention();
|
|
#endif
|
|
result = call_rtc_sleep_start(reject_triggers, config.power.hp_sys.dig_power.mem_dslp, deep_sleep);
|
|
}
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_HW_EXIT_SLEEP, (void *)0);
|
|
#else
|
|
result = call_rtc_sleep_start(reject_triggers, config.lslp_mem_inf_fpu, deep_sleep);
|
|
#endif
|
|
|
|
/* Unhold the SPI CS pin */
|
|
#if (CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP && CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND)
|
|
#if !CONFIG_IDF_TARGET_ESP32H2 // ESP32H2 TODO IDF-7359
|
|
if(!(pd_flags & RTC_SLEEP_PD_VDDSDIO)) {
|
|
gpio_ll_hold_dis(&GPIO, SPI_CS0_GPIO_NUM);
|
|
}
|
|
#endif
|
|
#endif
|
|
/* Cache Resume 1: Resume cache for continue running*/
|
|
resume_cache();
|
|
resume_timers(pd_flags);
|
|
}
|
|
}
|
|
#if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
|
|
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
|
|
/* Cache Suspend 2: If previous sleep powerdowned the flash, suspend cache here so that the
|
|
access to flash before flash ready can be explicitly exposed. */
|
|
suspend_cache();
|
|
}
|
|
#endif
|
|
// Restore CPU frequency
|
|
#if SOC_PM_SUPPORT_PMU_MODEM_STATE
|
|
if (pmu_sleep_pll_already_enabled()) {
|
|
rtc_clk_cpu_freq_to_pll_and_pll_lock_release(esp_pm_impl_get_cpu_freq(PM_MODE_CPU_MAX));
|
|
} else
|
|
#endif
|
|
{
|
|
rtc_clk_cpu_freq_set_config(&cpu_freq_config);
|
|
}
|
|
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_SW_CLK_READY, (void *)0);
|
|
|
|
if (!deep_sleep) {
|
|
s_config.ccount_ticks_record = esp_cpu_get_cycle_count();
|
|
#if SOC_PM_RETENTION_SW_TRIGGER_REGDMA
|
|
if (pd_flags & PMU_SLEEP_PD_TOP) {
|
|
sleep_retention_do_system_retention(false);
|
|
}
|
|
#endif
|
|
misc_modules_wake_prepare(pd_flags);
|
|
}
|
|
|
|
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
|
|
if (cpu_freq_config.source == SOC_CPU_CLK_SRC_PLL) {
|
|
// Turn up MSPI speed if switch to PLL
|
|
mspi_timing_change_speed_mode_cache_safe(false);
|
|
}
|
|
#endif
|
|
|
|
// re-enable UART output
|
|
resume_uarts();
|
|
return result ? ESP_ERR_SLEEP_REJECT : ESP_OK;
|
|
}
|
|
|
|
inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers, uint32_t lslp_mem_inf_fpu, bool dslp)
|
|
{
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers);
|
|
#elif SOC_PMU_SUPPORTED
|
|
return pmu_sleep_start(s_config.wakeup_triggers, reject_triggers, lslp_mem_inf_fpu, dslp);
|
|
#else
|
|
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers, lslp_mem_inf_fpu);
|
|
#endif
|
|
}
|
|
|
|
static esp_err_t IRAM_ATTR deep_sleep_start(bool allow_sleep_rejection)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
/* Due to hardware limitations, on S2 the brownout detector sometimes trigger during deep sleep
|
|
to circumvent this we disable the brownout detector before sleeping */
|
|
esp_brownout_disable();
|
|
#endif //CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
esp_sync_timekeeping_timers();
|
|
|
|
/* Disable interrupts and stall another core in case another task writes
|
|
* to RTC memory while we calculate RTC memory CRC.
|
|
*/
|
|
portENTER_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
esp_ipc_isr_stall_other_cpu();
|
|
esp_ipc_isr_stall_pause();
|
|
|
|
// record current RTC time
|
|
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
|
|
|
|
#if ESP_ROM_SUPPORT_DEEP_SLEEP_WAKEUP_STUB
|
|
// Configure wake stub
|
|
if (esp_get_deep_sleep_wake_stub() == NULL) {
|
|
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
|
|
}
|
|
#endif // ESP_ROM_SUPPORT_DEEP_SLEEP_WAKEUP_STUB
|
|
|
|
// Decide which power domains can be powered down
|
|
uint32_t pd_flags = get_power_down_flags();
|
|
|
|
// Re-calibrate the RTC clock
|
|
sleep_low_power_clock_calibration(true);
|
|
|
|
// Correct the sleep time
|
|
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
|
|
|
|
#if SOC_PMU_SUPPORTED
|
|
uint32_t force_pd_flags = PMU_SLEEP_PD_TOP | PMU_SLEEP_PD_VDDSDIO | PMU_SLEEP_PD_MODEM | PMU_SLEEP_PD_HP_PERIPH \
|
|
| PMU_SLEEP_PD_CPU | PMU_SLEEP_PD_MEM | PMU_SLEEP_PD_XTAL;
|
|
#if SOC_PM_SUPPORT_HP_AON_PD
|
|
force_pd_flags |= PMU_SLEEP_PD_HP_AON;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_CNNT_PD
|
|
force_pd_flags |= PMU_SLEEP_PD_CNNT;
|
|
#endif
|
|
#else
|
|
uint32_t force_pd_flags = RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | RTC_SLEEP_PD_INT_8M | RTC_SLEEP_PD_XTAL;
|
|
#endif
|
|
/**
|
|
* If all wireless modules share one power domain, we name this power domain "modem".
|
|
* If wireless modules have their own power domain, we give these power domains separate
|
|
* names.
|
|
*/
|
|
#if SOC_PM_SUPPORT_MODEM_PD
|
|
force_pd_flags |= RTC_SLEEP_PD_MODEM;
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_WIFI_PD
|
|
force_pd_flags |= RTC_SLEEP_PD_WIFI;
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_BT_PD
|
|
force_pd_flags |= RTC_SLEEP_PD_BT;
|
|
#endif
|
|
|
|
// Enter sleep
|
|
esp_err_t err = ESP_OK;
|
|
if (esp_sleep_start(force_pd_flags | pd_flags, ESP_SLEEP_MODE_DEEP_SLEEP, allow_sleep_rejection) == ESP_ERR_SLEEP_REJECT) {
|
|
err = ESP_ERR_SLEEP_REJECT;
|
|
#if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
|
|
/* Cache Resume 2: if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION is enabled, cache has been suspended in esp_sleep_start */
|
|
resume_cache();
|
|
#endif
|
|
ESP_EARLY_LOGE(TAG, "Deep sleep request is rejected");
|
|
} else {
|
|
// Because RTC is in a slower clock domain than the CPU, it
|
|
// can take several CPU cycles for the sleep mode to start.
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
// Never returns here, except that the sleep is rejected.
|
|
esp_ipc_isr_stall_resume();
|
|
esp_ipc_isr_release_other_cpu();
|
|
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
|
|
return err;
|
|
}
|
|
|
|
void IRAM_ATTR esp_deep_sleep_start(void)
|
|
{
|
|
bool allow_sleep_rejection = true;
|
|
deep_sleep_start(!allow_sleep_rejection);
|
|
// Never returns here
|
|
abort();
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_deep_sleep_try_to_start(void)
|
|
{
|
|
bool allow_sleep_rejection = true;
|
|
return deep_sleep_start(allow_sleep_rejection);
|
|
}
|
|
|
|
/**
|
|
* Helper function which handles entry to and exit from light sleep
|
|
* Placed into IRAM as flash may need some time to be powered on.
|
|
*/
|
|
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
|
|
uint32_t flash_enable_time_us) IRAM_ATTR __attribute__((noinline));
|
|
|
|
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
|
|
uint32_t flash_enable_time_us)
|
|
{
|
|
#if SOC_CONFIGURABLE_VDDSDIO_SUPPORTED
|
|
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
|
|
#endif
|
|
|
|
// Enter sleep
|
|
esp_err_t reject = esp_sleep_start(pd_flags, ESP_SLEEP_MODE_LIGHT_SLEEP, true);
|
|
|
|
#if SOC_CONFIGURABLE_VDDSDIO_SUPPORTED
|
|
// If VDDSDIO regulator was controlled by RTC registers before sleep,
|
|
// restore the configuration.
|
|
if (vddsdio_config.force) {
|
|
rtc_vddsdio_set_config(vddsdio_config);
|
|
}
|
|
#endif
|
|
|
|
// If SPI flash was powered down, wait for it to become ready
|
|
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
|
|
#if SOC_PM_SUPPORT_TOP_PD
|
|
if (pd_flags & PMU_SLEEP_PD_TOP) {
|
|
uint32_t flash_ready_hw_waited_time_us = pmu_sleep_get_wakup_retention_cost();
|
|
uint32_t flash_ready_sw_waited_time_us = (esp_cpu_get_cycle_count() - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / MHZ);
|
|
uint32_t flash_ready_waited_time_us = flash_ready_hw_waited_time_us + flash_ready_sw_waited_time_us;
|
|
if (flash_enable_time_us > flash_ready_waited_time_us){
|
|
flash_enable_time_us -= flash_ready_waited_time_us;
|
|
} else {
|
|
flash_enable_time_us = 0;
|
|
}
|
|
}
|
|
#endif
|
|
// Wait for the flash chip to start up
|
|
esp_rom_delay_us(flash_enable_time_us);
|
|
}
|
|
|
|
#if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
|
|
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
|
|
/* Cache Resume 2: flash is ready now, we can resume the cache and access flash safely after */
|
|
resume_cache();
|
|
}
|
|
#endif
|
|
|
|
return reject;
|
|
}
|
|
|
|
/**
|
|
* vddsdio is used for power supply of spi flash
|
|
*
|
|
* pd flash via menuconfig | pd flash via `esp_sleep_pd_config` | result
|
|
* ---------------------------------------------------------------------------------------------------
|
|
* 0 | 0 | no pd flash
|
|
* x | 1 | pd flash with relaxed conditions(force_pd)
|
|
* 1 | 0 | pd flash with strict conditions(safe_pd)
|
|
*/
|
|
FORCE_INLINE_ATTR bool can_power_down_vddsdio(uint32_t pd_flags, const uint32_t vddsdio_pd_sleep_duration)
|
|
{
|
|
bool force_pd = !(s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) || (s_config.sleep_duration > vddsdio_pd_sleep_duration);
|
|
bool safe_pd = (s_config.wakeup_triggers == RTC_TIMER_TRIG_EN) && (s_config.sleep_duration > vddsdio_pd_sleep_duration);
|
|
return (pd_flags & RTC_SLEEP_PD_VDDSDIO) ? force_pd : safe_pd;
|
|
}
|
|
|
|
esp_err_t esp_light_sleep_start(void)
|
|
{
|
|
s_config.ccount_ticks_record = esp_cpu_get_cycle_count();
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_SW_GOTO_SLEEP, (void *)0);
|
|
#if CONFIG_ESP_TASK_WDT_USE_ESP_TIMER
|
|
esp_err_t timerret = ESP_OK;
|
|
|
|
/* If a task watchdog timer is running, we have to stop it. */
|
|
timerret = esp_task_wdt_stop();
|
|
#endif // CONFIG_ESP_TASK_WDT_USE_ESP_TIMER
|
|
|
|
portENTER_CRITICAL(&s_config.lock);
|
|
/*
|
|
Note: We are about to stall the other CPU via the esp_ipc_isr_stall_other_cpu(). However, there is a chance of
|
|
deadlock if after stalling the other CPU, we attempt to take spinlocks already held by the other CPU that is.
|
|
|
|
Thus any functions that we call after stalling the other CPU will need to have the locks taken first to avoid
|
|
deadlock.
|
|
|
|
Todo: IDF-5257
|
|
*/
|
|
|
|
/* We will be calling esp_timer_private_set inside DPORT access critical
|
|
* section. Make sure the code on the other CPU is not holding esp_timer
|
|
* lock, otherwise there will be deadlock.
|
|
*/
|
|
esp_timer_private_lock();
|
|
|
|
/* We will be calling esp_rtc_get_time_us() below. Make sure the code on the other CPU is not holding the
|
|
* esp_rtc_get_time_us() lock, otherwise there will be deadlock. esp_rtc_get_time_us() is called via:
|
|
*
|
|
* - esp_clk_slowclk_cal_set() -> esp_rtc_get_time_us()
|
|
*/
|
|
esp_clk_private_lock();
|
|
|
|
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
|
|
uint32_t ccount_at_sleep_start = esp_cpu_get_cycle_count();
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_HW_TIME_START, (void *)0);
|
|
uint64_t high_res_time_at_start = esp_timer_get_time();
|
|
uint32_t sleep_time_overhead_in = (ccount_at_sleep_start - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
|
|
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->sleep_in_rtc_time_stamp = s_config.rtc_ticks_at_sleep_start;
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
#if ESP_SLEEP_POWER_DOWN_CPU && SOC_PM_CPU_RETENTION_BY_SW
|
|
sleep_smp_cpu_sleep_prepare();
|
|
#else
|
|
esp_ipc_isr_stall_other_cpu();
|
|
#endif
|
|
esp_ipc_isr_stall_pause();
|
|
#endif
|
|
|
|
#if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION && CONFIG_PM_SLP_IRAM_OPT
|
|
/* Cache Suspend 0: if CONFIG_PM_SLP_IRAM_OPT is enabled, suspend cache here so that the access to flash
|
|
* during the sleep process can be explicitly exposed.
|
|
*
|
|
* If we use EXTx wakeup, we must put related codes in IRAM, but The `rtc_io_desc` table
|
|
* consumes a significant amount of memory. For example, on the ESP32, its size is 1008
|
|
* bytes. Therefore, when EXTx wakeup is enabled, we do not perform cache access checks here */
|
|
uint32_t ignore_check_wakeup_triggers = 0;
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
ignore_check_wakeup_triggers |= RTC_EXT0_TRIG_EN;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
ignore_check_wakeup_triggers |= RTC_EXT1_TRIG_EN;
|
|
#endif
|
|
if (!(s_config.wakeup_triggers & ignore_check_wakeup_triggers)) {
|
|
suspend_cache();
|
|
}
|
|
#endif
|
|
|
|
// Decide which power domains can be powered down
|
|
uint32_t pd_flags = get_power_down_flags();
|
|
|
|
#ifdef CONFIG_ESP_SLEEP_RTC_BUS_ISO_WORKAROUND
|
|
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
|
|
#endif
|
|
|
|
// Re-calibrate the RTC clock
|
|
sleep_low_power_clock_calibration(false);
|
|
|
|
/*
|
|
* Adjustment time consists of parts below:
|
|
* 1. Hardware time waiting for internal 8M oscillate clock and XTAL;
|
|
* 2. Hardware state switching time of the rtc main state machine;
|
|
* 3. Code execution time when clock is not stable;
|
|
* 4. Code execution time which can be measured;
|
|
*/
|
|
#if SOC_PMU_SUPPORTED
|
|
int sleep_time_sw_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US + sleep_time_overhead_in + s_config.sleep_time_overhead_out;
|
|
int sleep_time_hw_adjustment = pmu_sleep_calculate_hw_wait_time(pd_flags, s_config.rtc_clk_cal_period, s_config.fast_clk_cal_period);
|
|
s_config.sleep_time_adjustment = sleep_time_sw_adjustment + sleep_time_hw_adjustment;
|
|
#else
|
|
uint32_t rtc_cntl_xtl_buf_wait_slp_cycles = rtc_time_us_to_slowclk(RTC_CNTL_XTL_BUF_WAIT_SLP_US, s_config.rtc_clk_cal_period);
|
|
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US + sleep_time_overhead_in + s_config.sleep_time_overhead_out
|
|
+ rtc_time_slowclk_to_us(rtc_cntl_xtl_buf_wait_slp_cycles + RTC_CNTL_CK8M_WAIT_SLP_CYCLES + RTC_CNTL_WAKEUP_DELAY_CYCLES, s_config.rtc_clk_cal_period);
|
|
#endif
|
|
|
|
// Decide if VDD_SDIO needs to be powered down;
|
|
// If it needs to be powered down, adjust sleep time.
|
|
const uint32_t flash_enable_time_us = ESP_SLEEP_WAIT_FLASH_READY_DEFAULT_DELAY_US + CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY;
|
|
|
|
/**
|
|
* If VDD_SDIO power domain is requested to be turned off, bit `RTC_SLEEP_PD_VDDSDIO`
|
|
* will be set in `pd_flags`.
|
|
*/
|
|
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
|
|
/*
|
|
* When VDD_SDIO power domain has to be turned off, the minimum sleep time of the
|
|
* system needs to meet the sum below:
|
|
* 1. Wait time for the flash power-on after waking up;
|
|
* 2. The execution time of codes between RTC Timer get start time
|
|
* with hardware starts to switch state to sleep;
|
|
* 3. The hardware state switching time of the rtc state machine during
|
|
* sleep and wake-up. This process requires 6 cycles to complete.
|
|
* The specific hardware state switching process and the cycles
|
|
* consumed are rtc_cpu_run_stall(1), cut_pll_rtl(2), cut_8m(1),
|
|
* min_protect(2);
|
|
* 4. All the adjustment time which is s_config.sleep_time_adjustment below.
|
|
*/
|
|
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
|
|
flash_enable_time_us + LIGHT_SLEEP_MIN_TIME_US + s_config.sleep_time_adjustment
|
|
+ rtc_time_slowclk_to_us(RTC_MODULE_SLEEP_PREPARE_CYCLES, s_config.rtc_clk_cal_period));
|
|
|
|
if (can_power_down_vddsdio(pd_flags, vddsdio_pd_sleep_duration)) {
|
|
if (s_config.sleep_time_overhead_out < flash_enable_time_us) {
|
|
s_config.sleep_time_adjustment += flash_enable_time_us;
|
|
}
|
|
} else {
|
|
/**
|
|
* Minimum sleep time is not enough, then keep the VDD_SDIO power
|
|
* domain on.
|
|
*/
|
|
pd_flags &= ~RTC_SLEEP_PD_VDDSDIO;
|
|
if (s_config.sleep_time_overhead_out > flash_enable_time_us) {
|
|
s_config.sleep_time_adjustment -= flash_enable_time_us;
|
|
}
|
|
}
|
|
}
|
|
|
|
periph_inform_out_light_sleep_overhead(s_config.sleep_time_adjustment - sleep_time_overhead_in);
|
|
|
|
// Safety net: enable WDT in case exit from light sleep fails
|
|
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
|
|
bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here.
|
|
if (!wdt_was_enabled) {
|
|
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
|
|
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
|
|
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
|
|
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
|
|
wdt_hal_enable(&rtc_wdt_ctx);
|
|
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
|
|
}
|
|
|
|
esp_err_t err = ESP_OK;
|
|
int64_t final_sleep_duration_us = (int64_t)s_config.sleep_duration - (int64_t)s_config.sleep_time_adjustment;
|
|
int64_t min_sleep_duration_us = rtc_time_slowclk_to_us(RTC_CNTL_MIN_SLP_VAL_MIN, s_config.rtc_clk_cal_period);
|
|
|
|
// reset light sleep wakeup flag before a new light sleep
|
|
s_light_sleep_wakeup = false;
|
|
|
|
s_lightsleep_cnt++;
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->lightsleep_cnt = s_lightsleep_cnt;
|
|
}
|
|
#endif
|
|
|
|
// if rtc timer wakeup source is enabled, need to compare final sleep duration and min sleep duration to avoid late wakeup
|
|
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) && (final_sleep_duration_us <= min_sleep_duration_us)) {
|
|
err = ESP_ERR_SLEEP_TOO_SHORT_SLEEP_DURATION;
|
|
} else {
|
|
// Enter sleep, then wait for flash to be ready on wakeup
|
|
err = esp_light_sleep_inner(pd_flags, flash_enable_time_us);
|
|
}
|
|
#if !CONFIG_FREERTOS_UNICORE && ESP_SLEEP_POWER_DOWN_CPU && SOC_PM_CPU_RETENTION_BY_SW
|
|
if (err != ESP_OK) {
|
|
esp_sleep_cpu_skip_retention();
|
|
}
|
|
#endif
|
|
|
|
// light sleep wakeup flag only makes sense after a successful light sleep
|
|
s_light_sleep_wakeup = (err == ESP_OK);
|
|
|
|
// System timer has been stopped for the duration of the sleep, correct for that.
|
|
uint64_t rtc_ticks_at_end = rtc_time_get();
|
|
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start, s_config.rtc_clk_cal_period);
|
|
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->sleep_out_rtc_time_stamp = rtc_ticks_at_end;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* If sleep duration is too small(less than 1 rtc_slow_clk cycle), rtc_time_diff will be zero.
|
|
* In this case, just ignore the time compensation and keep esp_timer monotonic.
|
|
*/
|
|
if (rtc_time_diff > 0) {
|
|
esp_timer_private_set(high_res_time_at_start + rtc_time_diff);
|
|
}
|
|
esp_set_time_from_rtc();
|
|
|
|
esp_clk_private_unlock();
|
|
esp_timer_private_unlock();
|
|
|
|
#if CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION && CONFIG_PM_SLP_IRAM_OPT
|
|
/* Cache Resume 0: sleep process done, resume cache for continue running */
|
|
if (!(s_config.wakeup_triggers & ignore_check_wakeup_triggers)) {
|
|
resume_cache();
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
esp_ipc_isr_stall_resume();
|
|
#if ESP_SLEEP_POWER_DOWN_CPU && SOC_PM_CPU_RETENTION_BY_SW
|
|
sleep_smp_cpu_wakeup_prepare();
|
|
#else
|
|
esp_ipc_isr_release_other_cpu();
|
|
#endif
|
|
#endif
|
|
|
|
if (!wdt_was_enabled) {
|
|
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
|
|
wdt_hal_disable(&rtc_wdt_ctx);
|
|
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
|
|
}
|
|
|
|
#if CONFIG_ESP_TASK_WDT_USE_ESP_TIMER
|
|
/* Restart the Task Watchdog timer as it was stopped before sleeping. */
|
|
if (timerret == ESP_OK) {
|
|
esp_task_wdt_restart();
|
|
}
|
|
#endif // CONFIG_ESP_TASK_WDT_USE_ESP_TIMER
|
|
|
|
esp_sleep_execute_event_callbacks(SLEEP_EVENT_SW_EXIT_SLEEP, (void *)0);
|
|
s_config.sleep_time_overhead_out = (esp_cpu_get_cycle_count() - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
|
|
|
|
#if CONFIG_ESP_SLEEP_DEBUG
|
|
if (s_sleep_ctx != NULL) {
|
|
s_sleep_ctx->sleep_request_result = err;
|
|
}
|
|
#endif
|
|
|
|
portEXIT_CRITICAL(&s_config.lock);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
|
|
{
|
|
// For most of sources it is enough to set trigger mask in local
|
|
// configuration structure. The actual RTC wake up options
|
|
// will be updated by esp_sleep_start().
|
|
if (source == ESP_SLEEP_WAKEUP_ALL) {
|
|
s_config.wakeup_triggers = 0;
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
|
|
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
|
|
s_config.sleep_duration = 0;
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
|
|
s_config.ext0_rtc_gpio_num = 0;
|
|
s_config.ext0_trigger_level = 0;
|
|
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
|
|
s_config.ext1_rtc_gpio_mask = 0;
|
|
s_config.ext1_trigger_mode = 0;
|
|
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_TOUCH_SENSOR_WAKEUP
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
|
|
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
|
|
#endif
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) {
|
|
s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN;
|
|
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) {
|
|
s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN);
|
|
}
|
|
#if CONFIG_ULP_COPROC_TYPE_FSM
|
|
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
|
|
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
|
|
}
|
|
#endif
|
|
else {
|
|
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_ulp_wakeup(void)
|
|
{
|
|
#ifndef CONFIG_ULP_COPROC_ENABLED
|
|
return ESP_ERR_INVALID_STATE;
|
|
#endif // CONFIG_ULP_COPROC_ENABLED
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#if ((defined CONFIG_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
|
|
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
|
|
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
|
|
#if CONFIG_ULP_COPROC_TYPE_FSM
|
|
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
|
|
return ESP_OK;
|
|
#elif CONFIG_ULP_COPROC_TYPE_RISCV
|
|
s_config.wakeup_triggers |= (RTC_COCPU_TRIG_EN | RTC_COCPU_TRAP_TRIG_EN);
|
|
return ESP_OK;
|
|
#elif CONFIG_ULP_COPROC_TYPE_LP_CORE
|
|
s_config.wakeup_triggers |= RTC_LP_CORE_TRIG_EN;
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif //CONFIG_ULP_COPROC_TYPE_FSM
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
|
|
{
|
|
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
|
|
s_config.sleep_duration = time_in_us;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t timer_wakeup_prepare(int64_t sleep_duration)
|
|
{
|
|
if (sleep_duration < 0) {
|
|
sleep_duration = 0;
|
|
}
|
|
|
|
int64_t ticks = rtc_time_us_to_slowclk(sleep_duration, s_config.rtc_clk_cal_period);
|
|
int64_t target_wakeup_tick = s_config.rtc_ticks_at_sleep_start + ticks;
|
|
|
|
#if SOC_LP_TIMER_SUPPORTED
|
|
#if CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP
|
|
// Last timer wake-up validity check
|
|
if ((sleep_duration == 0) || \
|
|
(target_wakeup_tick < rtc_time_get() + SLEEP_TIMER_ALARM_TO_SLEEP_TICKS)) {
|
|
// Treat too short sleep duration setting as timer reject
|
|
return ESP_ERR_SLEEP_REJECT;
|
|
}
|
|
#endif
|
|
lp_timer_hal_set_alarm_target(0, target_wakeup_tick);
|
|
#else
|
|
rtc_hal_set_wakeup_timer(target_wakeup_tick);
|
|
#endif
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
#if SOC_TOUCH_SENSOR_VERSION == 2
|
|
/* In deep sleep mode, only the sleep channel is supported, and other touch channels should be turned off. */
|
|
static void touch_wakeup_prepare(void)
|
|
{
|
|
uint16_t sleep_cycle = 0;
|
|
uint16_t meas_times = 0;
|
|
touch_pad_t touch_num = TOUCH_PAD_NUM0;
|
|
touch_ll_sleep_get_channel_num(&touch_num); // Check if the sleep pad is enabled.
|
|
if ((touch_num > TOUCH_PAD_NUM0) && (touch_num < TOUCH_PAD_MAX) && touch_ll_get_fsm_state()) {
|
|
touch_ll_stop_fsm();
|
|
touch_ll_clear_channel_mask(TOUCH_PAD_BIT_MASK_ALL);
|
|
touch_ll_intr_clear(TOUCH_PAD_INTR_MASK_ALL); // Clear state from previous wakeup
|
|
touch_hal_sleep_channel_get_work_time(&sleep_cycle, &meas_times);
|
|
touch_ll_set_meas_times(meas_times);
|
|
touch_ll_set_sleep_time(sleep_cycle);
|
|
touch_ll_set_channel_mask(BIT(touch_num));
|
|
touch_ll_start_fsm();
|
|
}
|
|
}
|
|
#elif SOC_TOUCH_SENSOR_VERSION == 3
|
|
static void touch_wakeup_prepare(void)
|
|
{
|
|
touch_hal_prepare_deep_sleep();
|
|
}
|
|
#endif
|
|
|
|
#if SOC_TOUCH_SENSOR_SUPPORTED
|
|
|
|
esp_err_t esp_sleep_enable_touchpad_wakeup(void)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#if ((defined CONFIG_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
|
|
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
|
|
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
|
|
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
|
|
return ESP_OK;
|
|
}
|
|
|
|
touch_pad_t esp_sleep_get_touchpad_wakeup_status(void)
|
|
{
|
|
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
|
|
return TOUCH_PAD_MAX;
|
|
}
|
|
touch_pad_t pad_num;
|
|
#if SOC_TOUCH_SENSOR_VERSION == 3
|
|
touch_ll_sleep_get_channel_num((uint32_t *)(&pad_num));
|
|
#else
|
|
touch_hal_get_wakeup_status(&pad_num);
|
|
#endif
|
|
return pad_num;
|
|
}
|
|
|
|
#endif // SOC_TOUCH_SENSOR_SUPPORTED
|
|
|
|
bool esp_sleep_is_valid_wakeup_gpio(gpio_num_t gpio_num)
|
|
{
|
|
#if SOC_RTCIO_PIN_COUNT > 0
|
|
return RTC_GPIO_IS_VALID_GPIO(gpio_num);
|
|
#else
|
|
#if !CONFIG_IDF_TARGET_ESP32C5_BETA3_VERSION // TODO: IDF-9673
|
|
return GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO(gpio_num);
|
|
#else
|
|
return true;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
|
|
{
|
|
if (level < 0 || level > 1) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio_num)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
|
|
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
|
|
s_config.ext0_rtc_gpio_num = rtc_io_number_get(gpio_num);
|
|
s_config.ext0_trigger_level = level;
|
|
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void ext0_wakeup_prepare(void)
|
|
{
|
|
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
|
|
#if SOC_LP_IO_CLOCK_IS_INDEPENDENT
|
|
io_mux_enable_lp_io_clock(rtc_gpio_num, true);
|
|
#endif
|
|
rtcio_hal_ext0_set_wakeup_pin(rtc_gpio_num, s_config.ext0_trigger_level);
|
|
rtcio_hal_function_select(rtc_gpio_num, RTCIO_LL_FUNC_RTC);
|
|
rtcio_hal_input_enable(rtc_gpio_num);
|
|
}
|
|
|
|
#endif // SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t io_mask, esp_sleep_ext1_wakeup_mode_t level_mode)
|
|
{
|
|
if (io_mask == 0 && level_mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
// Reset all EXT1 configs
|
|
esp_sleep_disable_ext1_wakeup_io(0);
|
|
|
|
return esp_sleep_enable_ext1_wakeup_io(io_mask, level_mode);
|
|
}
|
|
|
|
|
|
esp_err_t esp_sleep_enable_ext1_wakeup_io(uint64_t io_mask, esp_sleep_ext1_wakeup_mode_t level_mode)
|
|
{
|
|
if (io_mask == 0 && level_mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
|
|
uint32_t rtc_gpio_mask = 0;
|
|
for (int gpio = 0; io_mask; ++gpio, io_mask >>= 1) {
|
|
if ((io_mask & 1) == 0) {
|
|
continue;
|
|
}
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
|
|
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
|
|
}
|
|
|
|
#if !SOC_PM_SUPPORT_EXT1_WAKEUP_MODE_PER_PIN
|
|
uint32_t ext1_rtc_gpio_mask = 0;
|
|
uint32_t ext1_trigger_mode = 0;
|
|
|
|
ext1_rtc_gpio_mask = s_config.ext1_rtc_gpio_mask | rtc_gpio_mask;
|
|
if (level_mode) {
|
|
ext1_trigger_mode = s_config.ext1_trigger_mode | rtc_gpio_mask;
|
|
} else {
|
|
ext1_trigger_mode = s_config.ext1_trigger_mode & (~rtc_gpio_mask);
|
|
}
|
|
if (((ext1_rtc_gpio_mask & ext1_trigger_mode) != ext1_rtc_gpio_mask) &&
|
|
((ext1_rtc_gpio_mask & ext1_trigger_mode) != 0)) {
|
|
return ESP_ERR_NOT_ALLOWED;
|
|
}
|
|
#endif
|
|
|
|
s_config.ext1_rtc_gpio_mask |= rtc_gpio_mask;
|
|
if (level_mode) {
|
|
s_config.ext1_trigger_mode |= rtc_gpio_mask;
|
|
} else {
|
|
s_config.ext1_trigger_mode &= (~rtc_gpio_mask);
|
|
}
|
|
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_sleep_disable_ext1_wakeup_io(uint64_t io_mask)
|
|
{
|
|
if (io_mask == 0) {
|
|
s_config.ext1_rtc_gpio_mask = 0;
|
|
s_config.ext1_trigger_mode = 0;
|
|
} else {
|
|
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
|
|
uint32_t rtc_gpio_mask = 0;
|
|
for (int gpio = 0; io_mask; ++gpio, io_mask >>= 1) {
|
|
if ((io_mask & 1) == 0) {
|
|
continue;
|
|
}
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
|
|
ESP_LOGE(TAG, "Not an RTC IO Considering io_mask: GPIO%d", gpio);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
|
|
}
|
|
s_config.ext1_rtc_gpio_mask &= (~rtc_gpio_mask);
|
|
s_config.ext1_trigger_mode &= (~rtc_gpio_mask);
|
|
}
|
|
|
|
if (s_config.ext1_rtc_gpio_mask == 0) {
|
|
s_config.wakeup_triggers &= (~RTC_EXT1_TRIG_EN);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP_MODE_PER_PIN
|
|
esp_err_t esp_sleep_enable_ext1_wakeup_with_level_mask(uint64_t io_mask, uint64_t level_mask)
|
|
{
|
|
if ((level_mask & io_mask) != level_mask) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
|
|
// Translate bit map of GPIO wakeup mode into the bit map of RTC IO wakeup mode
|
|
uint32_t rtc_gpio_mask = 0, rtc_gpio_wakeup_mode_mask = 0;
|
|
for (int gpio = 0; io_mask; ++gpio, io_mask >>= 1, level_mask >>= 1) {
|
|
if ((io_mask & 1) == 0) {
|
|
continue;
|
|
}
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
|
|
ESP_LOGE(TAG, "Not an RTC IO Considering io_mask: GPIO%d", gpio);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
|
|
if ((level_mask & 1) == 1) {
|
|
rtc_gpio_wakeup_mode_mask |= BIT(rtc_io_number_get(gpio));
|
|
}
|
|
}
|
|
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
|
|
s_config.ext1_trigger_mode = rtc_gpio_wakeup_mode_mask;
|
|
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
static void ext1_wakeup_prepare(void)
|
|
{
|
|
// Configure all RTC IOs selected as ext1 wakeup inputs
|
|
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
|
|
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
|
|
int rtc_pin = rtc_io_number_get(gpio);
|
|
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
|
|
continue;
|
|
}
|
|
#if SOC_LP_IO_CLOCK_IS_INDEPENDENT
|
|
io_mux_enable_lp_io_clock(rtc_pin, true);
|
|
#endif
|
|
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
|
|
// Route pad to RTC
|
|
rtcio_hal_function_select(rtc_pin, RTCIO_LL_FUNC_RTC);
|
|
// set input enable in sleep mode
|
|
rtcio_hal_input_enable(rtc_pin);
|
|
#if SOC_PM_SUPPORT_RTC_PERIPH_PD
|
|
// Pad configuration depends on RTC_PERIPH state in sleep mode
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option != ESP_PD_OPTION_ON) {
|
|
rtcio_hal_hold_enable(rtc_pin);
|
|
}
|
|
#endif
|
|
#else
|
|
/* ESP32H2 use hp iomux to config rtcio, and there is no complete
|
|
* rtcio functionality. In the case of EXT1 wakeup, rtcio only provides
|
|
* a pathway to EXT1. */
|
|
|
|
// Route pad to DIGITAL
|
|
rtcio_hal_function_select(rtc_pin, RTCIO_LL_FUNC_DIGITAL);
|
|
// set input enable
|
|
gpio_ll_input_enable(&GPIO, gpio);
|
|
// hold rtc_pin to use it during sleep state
|
|
rtcio_hal_hold_enable(rtc_pin);
|
|
#endif
|
|
// Keep track of pins which are processed to bail out early
|
|
rtc_gpio_mask &= ~BIT(rtc_pin);
|
|
}
|
|
|
|
// Clear state from previous wakeup
|
|
rtc_hal_ext1_clear_wakeup_status();
|
|
// Set RTC IO pins and mode to be used for wakeup
|
|
rtc_hal_ext1_set_wakeup_pins(s_config.ext1_rtc_gpio_mask, s_config.ext1_trigger_mode);
|
|
}
|
|
|
|
uint64_t esp_sleep_get_ext1_wakeup_status(void)
|
|
{
|
|
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
|
|
return 0;
|
|
}
|
|
uint32_t status = rtc_hal_ext1_get_wakeup_status();
|
|
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
|
|
uint64_t gpio_mask = 0;
|
|
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
|
|
continue;
|
|
}
|
|
int rtc_pin = rtc_io_number_get(gpio);
|
|
if ((status & BIT(rtc_pin)) == 0) {
|
|
continue;
|
|
}
|
|
gpio_mask |= 1ULL << gpio;
|
|
}
|
|
return gpio_mask;
|
|
}
|
|
|
|
#endif // SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
|
|
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
|
|
uint64_t esp_sleep_get_gpio_wakeup_status(void)
|
|
{
|
|
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_GPIO) {
|
|
return 0;
|
|
}
|
|
return rtc_hal_gpio_get_wakeup_status();
|
|
}
|
|
|
|
static void gpio_deep_sleep_wakeup_prepare(void)
|
|
{
|
|
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++) {
|
|
if (((1ULL << gpio_idx) & s_config.gpio_wakeup_mask) == 0) {
|
|
continue;
|
|
}
|
|
#if CONFIG_ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS
|
|
if (s_config.gpio_trigger_mode & BIT(gpio_idx)) {
|
|
ESP_ERROR_CHECK(gpio_pullup_dis(gpio_idx));
|
|
ESP_ERROR_CHECK(gpio_pulldown_en(gpio_idx));
|
|
} else {
|
|
ESP_ERROR_CHECK(gpio_pullup_en(gpio_idx));
|
|
ESP_ERROR_CHECK(gpio_pulldown_dis(gpio_idx));
|
|
}
|
|
#endif
|
|
ESP_ERROR_CHECK(gpio_hold_en(gpio_idx));
|
|
}
|
|
// Clear state from previous wakeup
|
|
rtc_hal_gpio_clear_wakeup_status();
|
|
}
|
|
|
|
esp_err_t esp_deep_sleep_enable_gpio_wakeup(uint64_t gpio_pin_mask, esp_deepsleep_gpio_wake_up_mode_t mode)
|
|
{
|
|
if (mode > ESP_GPIO_WAKEUP_GPIO_HIGH) {
|
|
ESP_LOGE(TAG, "invalid mode");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
gpio_int_type_t intr_type = ((mode == ESP_GPIO_WAKEUP_GPIO_LOW) ? GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL);
|
|
esp_err_t err = ESP_OK;
|
|
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++, gpio_pin_mask >>= 1) {
|
|
if ((gpio_pin_mask & 1) == 0) {
|
|
continue;
|
|
}
|
|
if (!esp_sleep_is_valid_wakeup_gpio(gpio_idx)) {
|
|
ESP_LOGE(TAG, "gpio %d is an invalid deep sleep wakeup IO", gpio_idx);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
err = gpio_deep_sleep_wakeup_enable(gpio_idx, intr_type);
|
|
|
|
s_config.gpio_wakeup_mask |= BIT(gpio_idx);
|
|
if (mode == ESP_GPIO_WAKEUP_GPIO_HIGH) {
|
|
s_config.gpio_trigger_mode |= (mode << gpio_idx);
|
|
} else {
|
|
s_config.gpio_trigger_mode &= ~(mode << gpio_idx);
|
|
}
|
|
}
|
|
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
|
|
return err;
|
|
}
|
|
|
|
#endif //SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
|
|
|
|
esp_err_t esp_sleep_enable_gpio_wakeup(void)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
|
|
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
#endif
|
|
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
|
|
{
|
|
if (uart_num == UART_NUM_0) {
|
|
s_config.wakeup_triggers |= RTC_UART0_TRIG_EN;
|
|
} else if (uart_num == UART_NUM_1) {
|
|
s_config.wakeup_triggers |= RTC_UART1_TRIG_EN;
|
|
} else {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_wifi_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_WIFI_WAKEUP
|
|
s_config.wakeup_triggers |= RTC_WIFI_TRIG_EN;
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_sleep_disable_wifi_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_WIFI_WAKEUP
|
|
s_config.wakeup_triggers &= (~RTC_WIFI_TRIG_EN);
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_wifi_beacon_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_BEACON_WAKEUP
|
|
s_config.wakeup_triggers |= PMU_WIFI_BEACON_WAKEUP_EN;
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_sleep_disable_wifi_beacon_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_BEACON_WAKEUP
|
|
s_config.wakeup_triggers &= (~PMU_WIFI_BEACON_WAKEUP_EN);
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_sleep_enable_bt_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_BT_WAKEUP
|
|
s_config.wakeup_triggers |= RTC_BT_TRIG_EN;
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_sleep_disable_bt_wakeup(void)
|
|
{
|
|
#if SOC_PM_SUPPORT_BT_WAKEUP
|
|
s_config.wakeup_triggers &= (~RTC_BT_TRIG_EN);
|
|
return ESP_OK;
|
|
#else
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
|
|
{
|
|
if (esp_rom_get_reset_reason(0) != RESET_REASON_CORE_DEEP_SLEEP && !s_light_sleep_wakeup) {
|
|
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
|
}
|
|
|
|
#if SOC_PMU_SUPPORTED
|
|
uint32_t wakeup_cause = pmu_ll_hp_get_wakeup_cause(&PMU);
|
|
#else
|
|
uint32_t wakeup_cause = rtc_cntl_ll_get_wakeup_cause();
|
|
#endif
|
|
|
|
if (wakeup_cause & RTC_TIMER_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_TIMER;
|
|
} else if (wakeup_cause & RTC_GPIO_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_GPIO;
|
|
} else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) {
|
|
return ESP_SLEEP_WAKEUP_UART;
|
|
#if SOC_PM_SUPPORT_EXT0_WAKEUP
|
|
} else if (wakeup_cause & RTC_EXT0_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_EXT0;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_EXT1_WAKEUP
|
|
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_EXT1;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_TOUCH_SENSOR_WAKEUP
|
|
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_TOUCHPAD;
|
|
#endif
|
|
#if SOC_ULP_FSM_SUPPORTED
|
|
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_ULP;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_WIFI_WAKEUP
|
|
} else if (wakeup_cause & RTC_WIFI_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_WIFI;
|
|
#endif
|
|
#if SOC_PM_SUPPORT_BT_WAKEUP
|
|
} else if (wakeup_cause & RTC_BT_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_BT;
|
|
#endif
|
|
#if SOC_RISCV_COPROC_SUPPORTED
|
|
} else if (wakeup_cause & RTC_COCPU_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_ULP;
|
|
} else if (wakeup_cause & RTC_COCPU_TRAP_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG;
|
|
#endif
|
|
#if SOC_LP_CORE_SUPPORTED
|
|
} else if (wakeup_cause & RTC_LP_CORE_TRIG_EN) {
|
|
return ESP_SLEEP_WAKEUP_ULP;
|
|
#endif
|
|
} else {
|
|
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
|
}
|
|
}
|
|
|
|
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain, esp_sleep_pd_option_t option)
|
|
{
|
|
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
portENTER_CRITICAL_SAFE(&s_config.lock);
|
|
|
|
int refs = (option == ESP_PD_OPTION_ON) ? s_config.domain[domain].refs++ \
|
|
: (option == ESP_PD_OPTION_OFF) ? --s_config.domain[domain].refs \
|
|
: s_config.domain[domain].refs;
|
|
if (refs == 0) {
|
|
s_config.domain[domain].pd_option = option;
|
|
}
|
|
portEXIT_CRITICAL_SAFE(&s_config.lock);
|
|
assert(refs >= 0);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* The modules in the CPU and modem power domains still depend on the top power domain.
|
|
* To be safe, the CPU and Modem power domains must also be powered off and saved when
|
|
* the TOP is powered off. If not power down XTAL, power down TOP is meaningless, and
|
|
* the XTAL clock control of some chips(esp32c6/esp32h2) depends on the top domain.
|
|
*/
|
|
#if SOC_PM_SUPPORT_TOP_PD
|
|
FORCE_INLINE_ATTR bool top_domain_pd_allowed(void) {
|
|
bool top_pd_allowed = true;
|
|
#if ESP_SLEEP_POWER_DOWN_CPU
|
|
top_pd_allowed &= cpu_domain_pd_allowed();
|
|
#else
|
|
top_pd_allowed = false;
|
|
#endif
|
|
top_pd_allowed &= clock_domain_pd_allowed();
|
|
top_pd_allowed &= peripheral_domain_pd_allowed();
|
|
#if SOC_PM_SUPPORT_MODEM_PD
|
|
top_pd_allowed &= modem_domain_pd_allowed();
|
|
#endif
|
|
top_pd_allowed &= (s_config.domain[ESP_PD_DOMAIN_XTAL].pd_option != ESP_PD_OPTION_ON);
|
|
|
|
return top_pd_allowed;
|
|
}
|
|
#endif
|
|
|
|
static uint32_t get_power_down_flags(void)
|
|
{
|
|
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
|
|
|
|
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
|
|
// is used and RTC_SLOW_MEM is Auto.
|
|
// If there is any data placed into .rtc.data or .rtc.bss segments, and
|
|
// RTC_SLOW_MEM is Auto, keep it powered up as well.
|
|
|
|
#if SOC_PM_SUPPORT_RTC_SLOW_MEM_PD && SOC_ULP_SUPPORTED
|
|
// Labels are defined in the linker script
|
|
extern int _rtc_slow_length, _rtc_reserved_length;
|
|
/**
|
|
* Compiler considers "(size_t) &_rtc_slow_length > 0" to always be true.
|
|
* So use a volatile variable to prevent compiler from doing this optimization.
|
|
*/
|
|
volatile size_t rtc_slow_mem_used = (size_t)&_rtc_slow_length + (size_t)&_rtc_reserved_length;
|
|
|
|
if ((s_config.domain[ESP_PD_DOMAIN_RTC_SLOW_MEM].pd_option == ESP_PD_OPTION_AUTO) &&
|
|
(rtc_slow_mem_used > 0 || (s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_SLOW_MEM].pd_option = ESP_PD_OPTION_ON;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_RTC_FAST_MEM_PD
|
|
#if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
|
|
/* RTC_FAST_MEM is needed for deep sleep stub.
|
|
If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub can run.
|
|
In the new chip revision, deep sleep stub will be optional, and this can be changed. */
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_FAST_MEM].pd_option == ESP_PD_OPTION_AUTO) {
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_FAST_MEM].pd_option = ESP_PD_OPTION_ON;
|
|
}
|
|
#else
|
|
/* If RTC_FAST_MEM is used for heap, force RTC_FAST_MEM to be powered on. */
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_FAST_MEM].pd_option = ESP_PD_OPTION_ON;
|
|
#endif
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_RTC_PERIPH_PD
|
|
// RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup.
|
|
// If RTC_PERIPH is left auto (EXT0/GPIO aren't enabled), RTC_PERIPH will be powered off by default.
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option == ESP_PD_OPTION_AUTO) {
|
|
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) {
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option = ESP_PD_OPTION_ON;
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
|
|
// On ESP32, forcing power up of RTC_PERIPH
|
|
// prevents ULP timer and touch FSMs from working correctly.
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option = ESP_PD_OPTION_OFF;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
#if SOC_LP_CORE_SUPPORTED
|
|
else if (s_config.wakeup_triggers & RTC_LP_CORE_TRIG_EN) {
|
|
// Need to keep RTC_PERIPH on to allow lp core to wakeup during sleep (e.g. from lp timer)
|
|
s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option = ESP_PD_OPTION_ON;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
}
|
|
#endif // SOC_PM_SUPPORT_RTC_PERIPH_PD
|
|
|
|
/**
|
|
* VDD_SDIO power domain shall be kept on during the light sleep
|
|
* when CONFIG_ESP_SLEEP_POWER_DOWN_FLASH is not set and off when it is set.
|
|
* The application can still force the power domain to remain on by calling
|
|
* `esp_sleep_pd_config` before getting into light sleep mode.
|
|
*
|
|
* In deep sleep mode, the power domain will be turned off, regardless the
|
|
* value of this field.
|
|
*/
|
|
#if SOC_PM_SUPPORT_VDDSDIO_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_VDDSDIO].pd_option == ESP_PD_OPTION_AUTO) {
|
|
#ifndef CONFIG_ESP_SLEEP_POWER_DOWN_FLASH
|
|
s_config.domain[ESP_PD_DOMAIN_VDDSDIO].pd_option = ESP_PD_OPTION_ON;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
s_config.domain[ESP_PD_DOMAIN_XTAL].pd_option = ESP_PD_OPTION_OFF;
|
|
#endif
|
|
|
|
// Prepare flags based on the selected options
|
|
uint32_t pd_flags = 0;
|
|
#if SOC_PM_SUPPORT_RTC_FAST_MEM_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_FAST_MEM].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
|
|
}
|
|
#endif
|
|
#if SOC_PM_SUPPORT_RTC_SLOW_MEM_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_SLOW_MEM].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
|
|
}
|
|
#endif
|
|
#if SOC_PM_SUPPORT_RTC_PERIPH_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_RTC_PERIPH].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_CPU_PD && ESP_SLEEP_POWER_DOWN_CPU
|
|
if ((s_config.domain[ESP_PD_DOMAIN_CPU].pd_option != ESP_PD_OPTION_ON) && cpu_domain_pd_allowed()) {
|
|
pd_flags |= RTC_SLEEP_PD_CPU;
|
|
}
|
|
#endif
|
|
#if SOC_PM_SUPPORT_XTAL32K_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_XTAL32K].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= PMU_SLEEP_PD_XTAL32K;
|
|
}
|
|
#endif
|
|
#if SOC_PM_SUPPORT_RC32K_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_RC32K].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= PMU_SLEEP_PD_RC32K;
|
|
}
|
|
#endif
|
|
#if SOC_PM_SUPPORT_RC_FAST_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_RC_FAST].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_INT_8M;
|
|
}
|
|
#endif
|
|
if (s_config.domain[ESP_PD_DOMAIN_XTAL].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_XTAL;
|
|
}
|
|
#if SOC_PM_SUPPORT_TOP_PD
|
|
if ((s_config.domain[ESP_PD_DOMAIN_TOP].pd_option != ESP_PD_OPTION_ON) && top_domain_pd_allowed()) {
|
|
pd_flags |= PMU_SLEEP_PD_TOP;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_MODEM_PD
|
|
if ((s_config.domain[ESP_PD_DOMAIN_MODEM].pd_option != ESP_PD_OPTION_ON) && modem_domain_pd_allowed()
|
|
#if SOC_PM_MODEM_RETENTION_BY_REGDMA
|
|
&& clock_domain_pd_allowed()
|
|
#endif
|
|
) {
|
|
pd_flags |= RTC_SLEEP_PD_MODEM;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_CNNT_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_CNNT].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= PMU_SLEEP_PD_CNNT;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_PM_SUPPORT_VDDSDIO_PD
|
|
if (s_config.domain[ESP_PD_DOMAIN_VDDSDIO].pd_option != ESP_PD_OPTION_ON) {
|
|
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
|
|
}
|
|
#endif
|
|
|
|
#if ((defined CONFIG_RTC_CLK_SRC_EXT_CRYS) && (defined CONFIG_RTC_EXT_CRYST_ADDIT_CURRENT) && (SOC_PM_SUPPORT_RTC_PERIPH_PD))
|
|
if ((s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) == 0) {
|
|
// If enabled EXT1 only and enable the additional current by touch, should be keep RTC_PERIPH power on.
|
|
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
|
|
}
|
|
#endif
|
|
|
|
return pd_flags;
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* APP core of esp32 can't access to RTC FAST MEMORY, do not define it with RTC_IRAM_ATTR */
|
|
void
|
|
#else
|
|
void RTC_IRAM_ATTR
|
|
#endif
|
|
esp_deep_sleep_disable_rom_logging(void)
|
|
{
|
|
rtc_suppress_rom_log();
|
|
}
|
|
|
|
void esp_sleep_enable_adc_tsens_monitor(bool enable)
|
|
{
|
|
s_adc_tsen_enabled = enable;
|
|
}
|
|
|
|
void rtc_sleep_enable_ultra_low(bool enable)
|
|
{
|
|
s_ultra_low_enabled = enable;
|
|
}
|