mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
446 lines
20 KiB
C
446 lines
20 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sdkconfig.h"
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
#include "soc/soc.h"
|
|
#include "soc/soc_caps.h"
|
|
|
|
// TODO: IDF-5645
|
|
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2
|
|
#include "soc/lp_aon_reg.h"
|
|
#include "soc/pcr_reg.h"
|
|
#define SYSTEM_CPU_PER_CONF_REG PCR_CPU_WAITI_CONF_REG
|
|
#define SYSTEM_CPU_WAIT_MODE_FORCE_ON PCR_CPU_WAIT_MODE_FORCE_ON
|
|
#else
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#endif
|
|
|
|
#include "hal/soc_hal.h"
|
|
#include "esp_bit_defs.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp_cpu.h"
|
|
#if __XTENSA__
|
|
#include "xtensa/config/core-isa.h"
|
|
#else
|
|
#include "soc/system_reg.h" // For SYSTEM_CPU_PER_CONF_REG
|
|
#include "soc/dport_access.h" // For Dport access
|
|
#include "riscv/semihosting.h"
|
|
#endif
|
|
#if SOC_CPU_HAS_FLEXIBLE_INTC
|
|
#include "riscv/instruction_decode.h"
|
|
#endif
|
|
|
|
|
|
/* --------------------------------------------------- CPU Control -----------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
void esp_cpu_stall(int core_id)
|
|
{
|
|
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
|
|
#if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
|
|
/*
|
|
We need to write the value "0x86" to stall a particular core. The write location is split into two separate
|
|
bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has its own pair of
|
|
"c0" and "c1" bit fields.
|
|
|
|
Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
|
|
"rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
|
|
file's "rodata" section (see IDF-5214).
|
|
*/
|
|
int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
|
|
int rtc_cntl_c0_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_S : RTC_CNTL_SW_STALL_APPCPU_C0_S;
|
|
int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
|
|
int rtc_cntl_c1_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_S : RTC_CNTL_SW_STALL_APPCPU_C1_S;
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
|
|
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2 << rtc_cntl_c0_s);
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
|
|
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21 << rtc_cntl_c1_s);
|
|
#endif
|
|
}
|
|
|
|
void esp_cpu_unstall(int core_id)
|
|
{
|
|
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
|
|
#if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
|
|
/*
|
|
We need to write clear the value "0x86" to unstall a particular core. The location of this value is split into
|
|
two separate bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has
|
|
its own pair of "c0" and "c1" bit fields.
|
|
|
|
Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
|
|
"rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
|
|
file's "rodata" section (see IDF-5214).
|
|
*/
|
|
int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M;
|
|
int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M;
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m);
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m);
|
|
#endif
|
|
}
|
|
|
|
void esp_cpu_reset(int core_id)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5645
|
|
SET_PERI_REG_MASK(LP_AON_CPUCORE0_CFG_REG, LP_AON_CPU_CORE0_SW_RESET);
|
|
#else
|
|
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
|
|
#if SOC_CPU_CORES_NUM > 1
|
|
/*
|
|
Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the
|
|
"rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source
|
|
file's "rodata" section (see IDF-5214).
|
|
*/
|
|
int rtc_cntl_rst_m = (core_id == 0) ? RTC_CNTL_SW_PROCPU_RST_M : RTC_CNTL_SW_APPCPU_RST_M;
|
|
#else // SOC_CPU_CORES_NUM > 1
|
|
int rtc_cntl_rst_m = RTC_CNTL_SW_PROCPU_RST_M;
|
|
#endif // SOC_CPU_CORES_NUM > 1
|
|
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_rst_m);
|
|
#endif
|
|
}
|
|
|
|
void esp_cpu_wait_for_intr(void)
|
|
{
|
|
#if __XTENSA__
|
|
xt_utils_wait_for_intr();
|
|
#else
|
|
// TODO: IDF-5645 (better to implement with ll) C6 register names converted in the #include section at the top
|
|
if (esp_cpu_dbgr_is_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) {
|
|
/* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
|
|
so do not enter that mode when debugger is connected */
|
|
return;
|
|
}
|
|
rv_utils_wait_for_intr();
|
|
#endif // __XTENSA__
|
|
}
|
|
|
|
/* -------------------------------------------------- CPU Registers ----------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
/* ------------------------------------------------- CPU Interrupts ----------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
// ---------------- Interrupt Descriptors ------------------
|
|
|
|
#if SOC_CPU_HAS_FLEXIBLE_INTC
|
|
|
|
static bool is_intr_num_resv(int intr_num)
|
|
{
|
|
// Workaround to reserve interrupt number 1 for Wi-Fi, 5,8 for Bluetooth, 6 for "permanently disabled interrupt"
|
|
// [TODO: IDF-2465]
|
|
uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8);
|
|
|
|
// int_num 0,3,4,7 are inavaliable for PULP cpu
|
|
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5728 replace with a better macro name
|
|
reserved |= BIT(0) | BIT(3) | BIT(4) | BIT(7);
|
|
#endif
|
|
|
|
if (reserved & BIT(intr_num)) {
|
|
return true;
|
|
}
|
|
|
|
extern int _vector_table;
|
|
extern int _interrupt_handler;
|
|
const intptr_t pc = (intptr_t)(&_vector_table + intr_num);
|
|
|
|
/* JAL instructions are relative to the PC there are executed from. */
|
|
const intptr_t destination = pc + riscv_decode_offset_from_jal_instruction(pc);
|
|
|
|
return destination != (intptr_t)&_interrupt_handler;
|
|
}
|
|
|
|
void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
|
|
{
|
|
intr_desc_ret->priority = 1; //Todo: We should make this -1
|
|
intr_desc_ret->type = ESP_CPU_INTR_TYPE_NA;
|
|
#if __riscv
|
|
intr_desc_ret->flags = is_intr_num_resv(intr_num) ? ESP_CPU_INTR_DESC_FLAG_RESVD : 0;
|
|
#else
|
|
intr_desc_ret->flags = 0;
|
|
#endif
|
|
}
|
|
|
|
#else // SOC_CPU_HAS_FLEXIBLE_INTC
|
|
|
|
typedef struct {
|
|
int priority;
|
|
esp_cpu_intr_type_t type;
|
|
uint32_t flags[SOC_CPU_CORES_NUM];
|
|
} intr_desc_t;
|
|
|
|
#if SOC_CPU_CORES_NUM > 1
|
|
// Note: We currently only have dual core targets, so the table initializer is hard coded
|
|
const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //2
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //3
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //4
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
|
|
#if CONFIG_FREERTOS_CORETIMER_0
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
|
|
#else
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
|
|
#endif
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //9
|
|
{ 1, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //10
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //12
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //13
|
|
{ 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
|
|
#if CONFIG_FREERTOS_CORETIMER_1
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
|
|
#else
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
|
|
#endif
|
|
{ 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //17
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //18
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //19
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //20
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //21
|
|
{ 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //22
|
|
{ 3, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //23
|
|
{ 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //24
|
|
{ 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
|
|
{ 5, ESP_CPU_INTR_TYPE_LEVEL, { 0, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //26
|
|
{ 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
|
|
{ 4, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //28
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
|
|
{ 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
|
|
{ 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
|
|
};
|
|
|
|
#else // SOC_CPU_CORES_NUM > 1
|
|
|
|
const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = {
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //2
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //3
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //4
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5
|
|
#if CONFIG_FREERTOS_CORETIMER_0
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6
|
|
#else
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6
|
|
#endif
|
|
{ 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //9
|
|
{ 1, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //10
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //12
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //13
|
|
{ 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI
|
|
#if CONFIG_FREERTOS_CORETIMER_1
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15
|
|
#else
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15
|
|
#endif
|
|
{ 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //17
|
|
{ 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //18
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //19
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //20
|
|
{ 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //21
|
|
{ 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //22
|
|
{ 3, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //23
|
|
{ 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //24
|
|
{ 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25
|
|
{ 5, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //26
|
|
{ 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27
|
|
{ 4, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //28
|
|
{ 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29
|
|
{ 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30
|
|
{ 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31
|
|
};
|
|
|
|
#endif // SOC_CPU_CORES_NUM > 1
|
|
|
|
void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
|
|
{
|
|
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
|
|
#if SOC_CPU_CORES_NUM == 1
|
|
core_id = 0; //If this is a single core target, hard code CPU ID to 0
|
|
#endif
|
|
intr_desc_ret->priority = intr_desc_table[intr_num].priority;
|
|
intr_desc_ret->type = intr_desc_table[intr_num].type;
|
|
intr_desc_ret->flags = intr_desc_table[intr_num].flags[core_id];
|
|
}
|
|
|
|
#endif // SOC_CPU_HAS_FLEXIBLE_INTC
|
|
|
|
/* ---------------------------------------------------- Debugging ------------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
// --------------- Breakpoints/Watchpoints -----------------
|
|
|
|
#if SOC_CPU_BREAKPOINTS_NUM > 0
|
|
esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
|
|
{
|
|
/*
|
|
Todo:
|
|
- Check that bp_num is in range
|
|
*/
|
|
#if __XTENSA__
|
|
xt_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
|
|
#else
|
|
if (esp_cpu_dbgr_is_attached()) {
|
|
/* If we want to set breakpoint which when hit transfers control to debugger
|
|
* we need to set `action` in `mcontrol` to 1 (Enter Debug Mode).
|
|
* That `action` value is supported only when `dmode` of `tdata1` is set.
|
|
* But `dmode` can be modified by debugger only (from Debug Mode).
|
|
*
|
|
* So when debugger is connected we use special syscall to ask it to set breakpoint for us.
|
|
*/
|
|
long args[] = {true, bp_num, (long)bp_addr};
|
|
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
|
|
if (ret == 0) {
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
}
|
|
rv_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
|
|
#endif // __XTENSA__
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_cpu_clear_breakpoint(int bp_num)
|
|
{
|
|
/*
|
|
Todo:
|
|
- Check if the bp_num is valid
|
|
*/
|
|
#if __XTENSA__
|
|
xt_utils_clear_breakpoint(bp_num);
|
|
#else
|
|
if (esp_cpu_dbgr_is_attached()) {
|
|
// See description in esp_cpu_set_breakpoint()
|
|
long args[] = {false, bp_num};
|
|
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
|
|
if (ret == 0) {
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
}
|
|
rv_utils_clear_breakpoint(bp_num);
|
|
#endif // __XTENSA__
|
|
return ESP_OK;
|
|
}
|
|
#endif // SOC_CPU_BREAKPOINTS_NUM > 0
|
|
|
|
#if SOC_CPU_WATCHPOINTS_NUM > 0
|
|
esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger)
|
|
{
|
|
/*
|
|
Todo:
|
|
- Check that wp_num is in range
|
|
- Check if the wp_num is already in use
|
|
*/
|
|
// Check if size is 2^n, where n is in [0...6]
|
|
if (size < 1 || size > 64 || (size & (size - 1)) != 0) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
bool on_read = (trigger == ESP_CPU_WATCHPOINT_LOAD || trigger == ESP_CPU_WATCHPOINT_ACCESS);
|
|
bool on_write = (trigger == ESP_CPU_WATCHPOINT_STORE || trigger == ESP_CPU_WATCHPOINT_ACCESS);
|
|
#if __XTENSA__
|
|
xt_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
|
|
#else
|
|
if (esp_cpu_dbgr_is_attached()) {
|
|
// See description in esp_cpu_set_breakpoint()
|
|
long args[] = {true, wp_num, (long)wp_addr, (long)size,
|
|
(long)((on_read ? ESP_SEMIHOSTING_WP_FLG_RD : 0) | (on_write ? ESP_SEMIHOSTING_WP_FLG_WR : 0))
|
|
};
|
|
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
|
|
if (ret == 0) {
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
}
|
|
rv_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
|
|
#endif // __XTENSA__
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_cpu_clear_watchpoint(int wp_num)
|
|
{
|
|
/*
|
|
Todo:
|
|
- Check if the wp_num is valid
|
|
*/
|
|
#if __XTENSA__
|
|
xt_utils_clear_watchpoint(wp_num);
|
|
#else
|
|
if (esp_cpu_dbgr_is_attached()) {
|
|
// See description in esp_cpu_dbgr_is_attached()
|
|
long args[] = {false, wp_num};
|
|
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
|
|
if (ret == 0) {
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
}
|
|
rv_utils_clear_watchpoint(wp_num);
|
|
#endif // __XTENSA__
|
|
return ESP_OK;
|
|
}
|
|
#endif // SOC_CPU_WATCHPOINTS_NUM > 0
|
|
|
|
/* ------------------------------------------------------ Misc ---------------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
#if __XTENSA__ && XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
|
|
static DRAM_ATTR uint32_t external_ram_cas_lock = 0;
|
|
#endif
|
|
|
|
bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
|
|
{
|
|
#if __XTENSA__
|
|
bool ret;
|
|
#if XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
|
|
// Check if the target address is in external RAM
|
|
if ((uint32_t)addr >= SOC_EXTRAM_DATA_LOW && (uint32_t)addr < SOC_EXTRAM_DATA_HIGH) {
|
|
/* The target address is in external RAM, thus the native CAS instruction cannot be used. Instead, we achieve
|
|
atomicity by disabling interrupts and then acquiring an external RAM CAS lock. */
|
|
uint32_t intr_level;
|
|
__asm__ __volatile__ ("rsil %0, " XTSTR(XCHAL_EXCM_LEVEL) "\n"
|
|
: "=r"(intr_level));
|
|
if (!xt_utils_compare_and_set(&external_ram_cas_lock, 0, 1)) {
|
|
// External RAM CAS lock already taken. Exit
|
|
ret = false;
|
|
goto exit;
|
|
}
|
|
// Now we compare and set the target address
|
|
ret = (*addr == compare_value);
|
|
if (ret) {
|
|
*addr = new_value;
|
|
}
|
|
// Release the external RAM CAS lock
|
|
external_ram_cas_lock = 0;
|
|
exit:
|
|
// Reenable interrupts
|
|
__asm__ __volatile__ ("memw \n"
|
|
"wsr %0, ps\n"
|
|
:: "r"(intr_level));
|
|
} else
|
|
#endif // XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
|
|
{
|
|
// The target address is in internal RAM. Use the CPU's native CAS instruction
|
|
ret = xt_utils_compare_and_set(addr, compare_value, new_value);
|
|
}
|
|
return ret;
|
|
#else // __XTENSA__
|
|
// Single core targets don't have atomic CAS instruction. So access method is the same for internal and external RAM
|
|
return rv_utils_compare_and_set(addr, compare_value, new_value);
|
|
#endif
|
|
}
|