mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
94014a9a51
It is not possible to generate 1 MHz REF_TICK from 2 MHz APB clock (this is a limitation of REF_TICK divider circuit). Since switching REF_TICK frequency is something we would like to avoid (to maintain UART output even with DFS), 2 MHz frequency has been marked as unsupported.
511 lines
16 KiB
C
511 lines
16 KiB
C
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp_pm.h"
|
|
#include "esp_log.h"
|
|
#include "esp_crosscore_int.h"
|
|
|
|
#include "soc/rtc.h"
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/xtensa_timer.h"
|
|
#include "xtensa/core-macros.h"
|
|
|
|
#include "pm_impl.h"
|
|
#include "pm_trace.h"
|
|
#include "esp_timer_impl.h"
|
|
#include "esp32/pm.h"
|
|
|
|
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
|
|
* for the purpose of detecting a deadlock.
|
|
*/
|
|
#define CCOMPARE_UPDATE_TIMEOUT 1000000
|
|
|
|
#ifdef CONFIG_PM_PROFILING
|
|
#define WITH_PROFILING
|
|
#endif
|
|
|
|
|
|
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
/* The following state variables are protected using s_switch_lock: */
|
|
/* Current sleep mode; When switching, contains old mode until switch is complete */
|
|
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
|
|
/* True when switch is in progress */
|
|
static volatile bool s_is_switching;
|
|
/* When switch is in progress, this is the mode we are switching into */
|
|
static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
|
|
/* Number of times each mode was locked */
|
|
static size_t s_mode_lock_counts[PM_MODE_COUNT];
|
|
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
|
|
static uint32_t s_mode_mask;
|
|
|
|
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
|
|
* Only set to non-zero values when switch is in progress.
|
|
*/
|
|
static uint32_t s_ccount_div;
|
|
static uint32_t s_ccount_mul;
|
|
|
|
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
|
|
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
|
|
*/
|
|
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
|
|
|
|
/* When no RTOS tasks are active, these locks are released to allow going into
|
|
* a lower power mode. Used by ISR hook and idle hook.
|
|
*/
|
|
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
|
|
|
|
/* A flag indicating that Idle hook has run on a given CPU;
|
|
* Next interrupt on the same CPU will take s_rtos_lock_handle.
|
|
*/
|
|
static bool s_core_idle[portNUM_PROCESSORS];
|
|
|
|
/* g_ticks_us defined in ROM for PRO CPU */
|
|
extern uint32_t g_ticks_per_us_pro;
|
|
|
|
/* Lookup table of CPU frequencies to be used in each mode.
|
|
* Initialized by esp_pm_impl_init and modified by esp_pm_configure.
|
|
*/
|
|
rtc_cpu_freq_t s_cpu_freq_by_mode[PM_MODE_COUNT];
|
|
|
|
/* Lookup table of CPU ticks per microsecond for each RTC_CPU_FREQ_ value.
|
|
* Essentially the same as returned by rtc_clk_cpu_freq_value(), but without
|
|
* the function call. Not const because XTAL frequency is only known at run time.
|
|
*/
|
|
static uint32_t s_cpu_freq_to_ticks[] = {
|
|
[RTC_CPU_FREQ_XTAL] = 0, /* This is set by esp_pm_impl_init */
|
|
[RTC_CPU_FREQ_80M] = 80,
|
|
[RTC_CPU_FREQ_160M] = 160,
|
|
[RTC_CPU_FREQ_240M] = 240,
|
|
[RTC_CPU_FREQ_2M] = 2
|
|
};
|
|
|
|
/* Lookup table of names for each RTC_CPU_FREQ_ value. Used for logging only. */
|
|
static const char* s_freq_names[] __attribute__((unused)) = {
|
|
[RTC_CPU_FREQ_XTAL] = "XTAL",
|
|
[RTC_CPU_FREQ_80M] = "80",
|
|
[RTC_CPU_FREQ_160M] = "160",
|
|
[RTC_CPU_FREQ_240M] = "240",
|
|
[RTC_CPU_FREQ_2M] = "2"
|
|
};
|
|
|
|
/* Whether automatic light sleep is enabled. Currently always false */
|
|
static bool s_light_sleep_en = false;
|
|
|
|
/* When configuration is changed, current frequency may not match the
|
|
* newly configured frequency for the current mode. This is an indicator
|
|
* to the mode switch code to get the actual current frequency instead of
|
|
* relying on the current mode.
|
|
*/
|
|
static bool s_config_changed = false;
|
|
|
|
#ifdef WITH_PROFILING
|
|
/* Time, in microseconds, spent so far in each mode */
|
|
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
|
|
/* Timestamp, in microseconds, when the mode switch last happened */
|
|
static pm_time_t s_last_mode_change_time;
|
|
/* User-readable mode names, used by esp_pm_impl_dump_stats */
|
|
static const char* s_mode_names[] = {
|
|
"SLEEP",
|
|
"APB_MIN",
|
|
"APB_MAX",
|
|
"CPU_MAX"
|
|
};
|
|
#endif // WITH_PROFILING
|
|
|
|
|
|
static const char* TAG = "pm_esp32";
|
|
|
|
static void update_ccompare();
|
|
static void do_switch(pm_mode_t new_mode);
|
|
static void leave_idle();
|
|
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
|
|
|
|
|
|
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
|
|
{
|
|
(void) arg;
|
|
if (type == ESP_PM_CPU_FREQ_MAX) {
|
|
return PM_MODE_CPU_MAX;
|
|
} else if (type == ESP_PM_APB_FREQ_MAX) {
|
|
return PM_MODE_APB_MAX;
|
|
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
|
|
return PM_MODE_APB_MIN;
|
|
} else {
|
|
// unsupported mode
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* rtc_cpu_freq_t enum is not ordered by frequency, so convert to MHz,
|
|
* figure out the maximum value, then convert back to rtc_cpu_freq_t.
|
|
*/
|
|
static rtc_cpu_freq_t max_freq_of(rtc_cpu_freq_t f1, rtc_cpu_freq_t f2)
|
|
{
|
|
int f1_hz = rtc_clk_cpu_freq_value(f1);
|
|
int f2_hz = rtc_clk_cpu_freq_value(f2);
|
|
int f_max_hz = MAX(f1_hz, f2_hz);
|
|
rtc_cpu_freq_t result = RTC_CPU_FREQ_XTAL;
|
|
if (!rtc_clk_cpu_freq_from_mhz(f_max_hz/1000000, &result)) {
|
|
assert(false && "unsupported frequency");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
esp_err_t esp_pm_configure(const void* vconfig)
|
|
{
|
|
#ifndef CONFIG_PM_ENABLE
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
|
|
const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
|
|
if (config->light_sleep_enable) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (config->min_cpu_freq == RTC_CPU_FREQ_2M) {
|
|
/* Minimal APB frequency to achieve 1MHz REF_TICK frequency is 5 MHz */
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
rtc_cpu_freq_t min_freq = config->min_cpu_freq;
|
|
rtc_cpu_freq_t max_freq = config->max_cpu_freq;
|
|
int min_freq_mhz = rtc_clk_cpu_freq_value(min_freq);
|
|
int max_freq_mhz = rtc_clk_cpu_freq_value(max_freq);
|
|
if (min_freq_mhz > max_freq_mhz) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
rtc_cpu_freq_t apb_max_freq = max_freq; /* CPU frequency in APB_MAX mode */
|
|
if (max_freq == RTC_CPU_FREQ_240M) {
|
|
/* We can't switch between 240 and 80/160 without disabling PLL,
|
|
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
|
|
*/
|
|
apb_max_freq = RTC_CPU_FREQ_240M;
|
|
} else if (max_freq == RTC_CPU_FREQ_160M || max_freq == RTC_CPU_FREQ_80M) {
|
|
/* Otherwise, can use 80MHz
|
|
* CPU frequency when 80MHz APB frequency is requested.
|
|
*/
|
|
apb_max_freq = RTC_CPU_FREQ_80M;
|
|
}
|
|
|
|
apb_max_freq = max_freq_of(apb_max_freq, min_freq);
|
|
|
|
ESP_LOGI(TAG, "Frequency switching config: "
|
|
"CPU_MAX: %s, APB_MAX: %s, APB_MIN: %s, Light sleep: %s",
|
|
s_freq_names[max_freq],
|
|
s_freq_names[apb_max_freq],
|
|
s_freq_names[min_freq],
|
|
config->light_sleep_enable ? "ENABLED" : "DISABLED");
|
|
|
|
portENTER_CRITICAL(&s_switch_lock);
|
|
s_cpu_freq_by_mode[PM_MODE_CPU_MAX] = max_freq;
|
|
s_cpu_freq_by_mode[PM_MODE_APB_MAX] = apb_max_freq;
|
|
s_cpu_freq_by_mode[PM_MODE_APB_MIN] = min_freq;
|
|
s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = min_freq;
|
|
s_light_sleep_en = config->light_sleep_enable;
|
|
s_config_changed = true;
|
|
portEXIT_CRITICAL(&s_switch_lock);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
|
|
{
|
|
/* TODO: optimize using ffs/clz */
|
|
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
|
|
return PM_MODE_CPU_MAX;
|
|
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
|
|
return PM_MODE_APB_MAX;
|
|
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
|
|
return PM_MODE_APB_MIN;
|
|
} else {
|
|
return PM_MODE_LIGHT_SLEEP;
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
|
|
pm_mode_switch_t lock_or_unlock, pm_time_t now)
|
|
{
|
|
bool need_switch = false;
|
|
uint32_t mode_mask = BIT(mode);
|
|
portENTER_CRITICAL(&s_switch_lock);
|
|
uint32_t count;
|
|
if (lock_or_unlock == MODE_LOCK) {
|
|
count = ++s_mode_lock_counts[mode];
|
|
} else {
|
|
count = s_mode_lock_counts[mode]--;
|
|
}
|
|
if (count == 1) {
|
|
if (lock_or_unlock == MODE_LOCK) {
|
|
s_mode_mask |= mode_mask;
|
|
} else {
|
|
s_mode_mask &= ~mode_mask;
|
|
}
|
|
need_switch = true;
|
|
}
|
|
|
|
pm_mode_t new_mode = s_mode;
|
|
if (need_switch) {
|
|
new_mode = get_lowest_allowed_mode();
|
|
#ifdef WITH_PROFILING
|
|
if (s_last_mode_change_time != 0) {
|
|
pm_time_t diff = now - s_last_mode_change_time;
|
|
s_time_in_mode[s_mode] += diff;
|
|
}
|
|
s_last_mode_change_time = now;
|
|
#endif // WITH_PROFILING
|
|
}
|
|
portEXIT_CRITICAL(&s_switch_lock);
|
|
if (need_switch && new_mode != s_mode) {
|
|
do_switch(new_mode);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
|
|
* values on both CPUs.
|
|
* @param old_ticks_per_us old CPU frequency
|
|
* @param ticks_per_us new CPU frequency
|
|
*/
|
|
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
|
|
{
|
|
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
|
|
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
|
|
/* Update APB frequency value used by the timer */
|
|
if (old_apb_ticks_per_us != apb_ticks_per_us) {
|
|
esp_timer_impl_update_apb_freq(apb_ticks_per_us);
|
|
}
|
|
|
|
/* Calculate new tick divisor */
|
|
_xt_tick_divisor = ticks_per_us * 1000000 / XT_TICK_PER_SEC;
|
|
|
|
int core_id = xPortGetCoreID();
|
|
if (s_rtos_lock_handle[core_id] != NULL) {
|
|
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
|
|
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
|
|
* to calculate new CCOMPARE value.
|
|
*/
|
|
s_ccount_div = old_ticks_per_us;
|
|
s_ccount_mul = ticks_per_us;
|
|
|
|
/* Update CCOMPARE value on this CPU */
|
|
update_ccompare();
|
|
|
|
#if portNUM_PROCESSORS == 2
|
|
/* Send interrupt to the other CPU to update CCOMPARE value */
|
|
int other_core_id = (core_id == 0) ? 1 : 0;
|
|
|
|
s_need_update_ccompare[other_core_id] = true;
|
|
esp_crosscore_int_send_freq_switch(other_core_id);
|
|
|
|
int timeout = 0;
|
|
while (s_need_update_ccompare[other_core_id]) {
|
|
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
|
|
assert(false && "failed to update CCOMPARE, possible deadlock");
|
|
}
|
|
}
|
|
#endif // portNUM_PROCESSORS == 2
|
|
|
|
s_ccount_mul = 0;
|
|
s_ccount_div = 0;
|
|
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform the switch to new power mode.
|
|
* Currently only changes the CPU frequency and adjusts clock dividers.
|
|
* No light sleep yet.
|
|
* @param new_mode mode to switch to
|
|
*/
|
|
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
|
|
{
|
|
const int core_id = xPortGetCoreID();
|
|
|
|
do {
|
|
portENTER_CRITICAL_ISR(&s_switch_lock);
|
|
if (!s_is_switching) {
|
|
break;
|
|
}
|
|
if (s_new_mode <= new_mode) {
|
|
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
|
return;
|
|
}
|
|
if (s_need_update_ccompare[core_id]) {
|
|
s_need_update_ccompare[core_id] = false;
|
|
}
|
|
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
|
} while (true);
|
|
s_new_mode = new_mode;
|
|
s_is_switching = true;
|
|
bool config_changed = s_config_changed;
|
|
s_config_changed = false;
|
|
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
|
|
|
rtc_cpu_freq_t new_freq = s_cpu_freq_by_mode[new_mode];
|
|
rtc_cpu_freq_t old_freq;
|
|
if (!config_changed) {
|
|
old_freq = s_cpu_freq_by_mode[s_mode];
|
|
} else {
|
|
old_freq = rtc_clk_cpu_freq_get();
|
|
}
|
|
|
|
if (new_freq != old_freq) {
|
|
uint32_t old_ticks_per_us = g_ticks_per_us_pro;
|
|
uint32_t new_ticks_per_us = s_cpu_freq_to_ticks[new_freq];
|
|
|
|
bool switch_down = new_ticks_per_us < old_ticks_per_us;
|
|
|
|
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
|
|
if (switch_down) {
|
|
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
|
}
|
|
rtc_clk_cpu_freq_set_fast(new_freq);
|
|
if (!switch_down) {
|
|
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
|
}
|
|
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
|
|
}
|
|
|
|
portENTER_CRITICAL_ISR(&s_switch_lock);
|
|
s_mode = new_mode;
|
|
s_is_switching = false;
|
|
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
|
}
|
|
|
|
/**
|
|
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
|
|
*
|
|
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
|
|
* would happen without the frequency change.
|
|
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
|
|
*/
|
|
static void IRAM_ATTR update_ccompare()
|
|
{
|
|
const uint32_t ccompare_min_cycles_in_future = 1000;
|
|
uint32_t ccount = XTHAL_GET_CCOUNT();
|
|
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
|
|
if ((ccompare - ccompare_min_cycles_in_future) - ccount < UINT32_MAX / 2) {
|
|
uint32_t diff = ccompare - ccount;
|
|
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
|
|
if (diff_scaled < _xt_tick_divisor) {
|
|
uint32_t new_ccompare = ccount + diff_scaled;
|
|
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void IRAM_ATTR leave_idle()
|
|
{
|
|
int core_id = xPortGetCoreID();
|
|
if (s_core_idle[core_id]) {
|
|
// TODO: possible optimization: raise frequency here first
|
|
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
|
|
s_core_idle[core_id] = false;
|
|
}
|
|
}
|
|
|
|
void esp_pm_impl_idle_hook()
|
|
{
|
|
int core_id = xPortGetCoreID();
|
|
uint32_t state = portENTER_CRITICAL_NESTED();
|
|
if (!s_core_idle[core_id]) {
|
|
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
|
|
s_core_idle[core_id] = true;
|
|
}
|
|
portEXIT_CRITICAL_NESTED(state);
|
|
ESP_PM_TRACE_ENTER(IDLE, core_id);
|
|
}
|
|
|
|
void IRAM_ATTR esp_pm_impl_isr_hook()
|
|
{
|
|
int core_id = xPortGetCoreID();
|
|
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
|
|
#if portNUM_PROCESSORS == 2
|
|
if (s_need_update_ccompare[core_id]) {
|
|
update_ccompare();
|
|
s_need_update_ccompare[core_id] = false;
|
|
} else {
|
|
leave_idle();
|
|
}
|
|
#else
|
|
leave_idle();
|
|
#endif // portNUM_PROCESSORS == 2
|
|
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
|
|
}
|
|
|
|
#ifdef WITH_PROFILING
|
|
void esp_pm_impl_dump_stats(FILE* out)
|
|
{
|
|
pm_time_t time_in_mode[PM_MODE_COUNT];
|
|
|
|
portENTER_CRITICAL_ISR(&s_switch_lock);
|
|
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
|
|
pm_time_t last_mode_change_time = s_last_mode_change_time;
|
|
pm_mode_t cur_mode = s_mode;
|
|
pm_time_t now = pm_get_time();
|
|
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
|
|
|
time_in_mode[cur_mode] += now - last_mode_change_time;
|
|
|
|
fprintf(out, "Mode stats:\n");
|
|
for (int i = 0; i < PM_MODE_COUNT; ++i) {
|
|
if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
|
|
/* don't display light sleep mode if it's not enabled */
|
|
continue;
|
|
}
|
|
fprintf(out, "%8s %6s %12lld %2d%%\n",
|
|
s_mode_names[i],
|
|
s_freq_names[s_cpu_freq_by_mode[i]],
|
|
time_in_mode[i],
|
|
(int) (time_in_mode[i] * 100 / now));
|
|
}
|
|
}
|
|
#endif // WITH_PROFILING
|
|
|
|
void esp_pm_impl_init()
|
|
{
|
|
s_cpu_freq_to_ticks[RTC_CPU_FREQ_XTAL] = rtc_clk_xtal_freq_get();
|
|
#ifdef CONFIG_PM_TRACE
|
|
esp_pm_trace_init();
|
|
#endif
|
|
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
|
|
&s_rtos_lock_handle[0]));
|
|
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
|
|
#if portNUM_PROCESSORS == 2
|
|
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
|
|
&s_rtos_lock_handle[1]));
|
|
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
|
|
#endif // portNUM_PROCESSORS == 2
|
|
|
|
/* Configure all modes to use the default CPU frequency.
|
|
* This will be modified later by a call to esp_pm_configure.
|
|
*/
|
|
rtc_cpu_freq_t default_freq;
|
|
if (!rtc_clk_cpu_freq_from_mhz(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &default_freq)) {
|
|
assert(false && "unsupported frequency");
|
|
}
|
|
for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
|
|
s_cpu_freq_by_mode[i] = default_freq;
|
|
}
|
|
}
|