esp-idf/components/efuse/esp32h2/esp_efuse_utility.c

229 lines
11 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_log.h"
#include "assert.h"
#include "esp_efuse_utility.h"
#include "soc/efuse_periph.h"
#include "esp32h2/clk.h"
#include "esp32h2/rom/efuse.h"
static const char *TAG = "efuse";
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
#ifdef CONFIG_EFUSE_VIRTUAL
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
#endif // CONFIG_EFUSE_VIRTUAL
/*Range addresses to read blocks*/
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
{EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
{EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
{EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
{EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
{EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
{EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
{EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
{EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
{EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
{EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
{EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6
};
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
/*Range addresses to write blocks (it is not real regs, it is buffer) */
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
};
#ifndef CONFIG_EFUSE_VIRTUAL
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
// efuse clock is fixed in ESP32-C3, so the ets_efuse_set_timing() function
// takes an argument for compatibility with older ROM functions but it's ignored.
int res = ets_efuse_set_timing(0);
assert(res == 0);
(void)res;
REG_SET_FIELD(EFUSE_WR_TIM_CONF2_REG, EFUSE_PWR_OFF_NUM, 0x60);
return ESP_OK;
}
static bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
return true;
}
}
} else if (block <= 10) {
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK8, BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1 (low)
// EFUSE_RD_RS_ERR1_REG: BLOCK10, BLOCK9
block--;
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
}
return false;
}
#endif // ifndef CONFIG_EFUSE_VIRTUAL
// Efuse read operation: copies data from physical efuses to efuse read registers.
void esp_efuse_utility_clear_program_registers(void)
{
ets_efuse_read();
ets_efuse_clear_program_registers();
}
esp_err_t esp_efuse_utility_check_errors(void)
{
return ESP_OK;
}
// Burn values written to the efuse write registers
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
int subblock = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
}
}
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
ets_efuse_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
ets_efuse_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
ets_efuse_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
// This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
// The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
// They will be filled during the burn operation.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block)) {
int num_reg = 0;
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
if (esp_efuse_utility_read_reg(num_block, num_reg)) {
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
return ESP_ERR_CODING;
}
}
break;
}
}
}
}
return ESP_OK;
}