esp-idf/components/heap/heap_task_info.c
Guillaume Souchere 3737bf8322 heap: Remove TLSF related files and replace them with the tlsf submodule
As the tlsf implementation is a fork from https://github.com/mattconte/tlsf,
the sources are moved to a separate repository and used as a submodule in the esp-idf instead.

In this commit:
- Removing TLSF related files and using tlsf submodule instead.

- Adding components/heap/tlsf_platform.h header gathering all IDF specifics.

- The multi_heap_poisoning.c provides the declaration of the
function block_absorb_post_hook() definied weak in the TLSF repository.

- The tlsf_platform.h includes the tlsf_common.h file after the definition
of FL_INDEX_MAX_PLATFORM macro to make sure that this macro will be available
in tlsf_common.h without having to include tlaf_platform.h from IDF in the
tlsf_common.h header from the TLSF repository.

- Add missing include from tlsf_block_functions.h in the multi_heap.c file.
Change related to the changes made in TLSF repository (tlsf_block_functions.h
no longer included in tlsf.h)
2022-08-02 12:55:31 +02:00

122 lines
4.0 KiB
C

/*
* SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <multi_heap.h>
#include "multi_heap_internal.h"
#include "heap_private.h"
#include "esp_heap_task_info.h"
#ifdef CONFIG_HEAP_TASK_TRACKING
/*
* Return per-task heap allocation totals and lists of blocks.
*
* For each task that has allocated memory from the heap, return totals for
* allocations within regions matching one or more sets of capabilities.
*
* Optionally also return an array of structs providing details about each
* block allocated by one or more requested tasks, or by all tasks.
*
* Returns the number of block detail structs returned.
*/
size_t heap_caps_get_per_task_info(heap_task_info_params_t *params)
{
heap_t *reg;
heap_task_block_t *blocks = params->blocks;
size_t count = *params->num_totals;
size_t remaining = params->max_blocks;
// Clear out totals for any prepopulated tasks.
if (params->totals) {
for (size_t i = 0; i < count; ++i) {
for (size_t type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
params->totals[i].size[type] = 0;
params->totals[i].count[type] = 0;
}
}
}
SLIST_FOREACH(reg, &registered_heaps, next) {
multi_heap_handle_t heap = reg->heap;
if (heap == NULL) {
continue;
}
// Find if the capabilities of this heap region match on of the desired
// sets of capabilities.
uint32_t caps = get_all_caps(reg);
uint32_t type;
for (type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
if ((caps & params->mask[type]) == params->caps[type]) {
break;
}
}
if (type == NUM_HEAP_TASK_CAPS) {
continue;
}
multi_heap_block_handle_t b = multi_heap_get_first_block(heap);
multi_heap_internal_lock(heap);
for ( ; b ; b = multi_heap_get_next_block(heap, b)) {
if (multi_heap_is_free(b)) {
continue;
}
void *p = multi_heap_get_block_address(b); // Safe, only arithmetic
size_t bsize = multi_heap_get_allocated_size(heap, p); // Validates
TaskHandle_t btask = (TaskHandle_t)multi_heap_get_block_owner(b);
// Accumulate per-task allocation totals.
if (params->totals) {
size_t i;
for (i = 0; i < count; ++i) {
if (params->totals[i].task == btask) {
break;
}
}
if (i < count) {
params->totals[i].size[type] += bsize;
params->totals[i].count[type] += 1;
}
else {
if (count < params->max_totals) {
params->totals[count].task = btask;
params->totals[count].size[type] = bsize;
params->totals[i].count[type] = 1;
++count;
}
}
}
// Return details about allocated blocks for selected tasks.
if (blocks && remaining > 0) {
if (params->tasks) {
size_t i;
for (i = 0; i < params->num_tasks; ++i) {
if (btask == params->tasks[i]) {
break;
}
}
if (i == params->num_tasks) {
continue;
}
}
blocks->task = btask;
blocks->address = p;
blocks->size = bsize;
++blocks;
--remaining;
}
}
multi_heap_internal_unlock(heap);
}
*params->num_totals = count;
return params->max_blocks - remaining;
}
#endif // CONFIG_HEAP_TASK_TRACKING