fl0wl0w 90d1dcfd76 feat(freertos): Introduced new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES
This commit replaces the use of portNUM_PROCESSORS and configNUM_CORES
macros in all of ESP-IDF. These macros are needed to realize an SMP
scenario by fetching the number of active cores FreeRTOS is running on.
Instead, a new Kconfig option, CONFIG_FREERTOS_NUMBER_OF_CORES, has been
added as a proxy for the FreeRTOS config option, configNUMBER_OF_CORES.
This new commit is now used to realize an SMP scenario in various places
in ESP-IDF.

[Sudeep Mohanty: Added new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES]

Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
2024-02-09 09:11:28 +01:00

1852 lines
59 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "esp_heap_caps_init.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/portmacro.h"
#include "xtensa_api.h" // Replace with interrupt allocator API (IDF-3891)
#include "xtensa/core-macros.h"
#include "esp_types.h"
#include "esp_mac.h"
#include "esp_random.h"
#include "esp_task.h"
#include "esp_intr_alloc.h"
#include "esp_attr.h"
#include "esp_phy_init.h"
#include "esp_bt.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_private/esp_clk.h"
#include "esp_private/periph_ctrl.h"
#include "soc/rtc.h"
#include "soc/soc_memory_layout.h"
#include "soc/dport_reg.h"
#include "private/esp_coexist_internal.h"
#include "esp_timer.h"
#if !CONFIG_FREERTOS_UNICORE
#include "esp_ipc.h"
#endif
#include "esp_rom_sys.h"
#include "hli_api.h"
#if CONFIG_BT_ENABLED
/* Macro definition
************************************************************************
*/
#define UNUSED(x) (void)(x)
#define BTDM_LOG_TAG "BTDM_INIT"
#define BTDM_INIT_PERIOD (5000) /* ms */
/* Bluetooth system and controller config */
#define BTDM_CFG_BT_DATA_RELEASE (1<<0)
#define BTDM_CFG_HCI_UART (1<<1)
#define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
#define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
#define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
#define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
/* Sleep mode */
#define BTDM_MODEM_SLEEP_MODE_NONE (0)
#define BTDM_MODEM_SLEEP_MODE_ORIG (1)
#define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
/* Low Power Clock Selection */
#define BTDM_LPCLK_SEL_XTAL (0)
#define BTDM_LPCLK_SEL_XTAL32K (1)
#define BTDM_LPCLK_SEL_RTC_SLOW (2)
#define BTDM_LPCLK_SEL_8M (3)
/* Sleep and wakeup interval control */
#define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
#define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
#define BT_DEBUG(...)
#define BT_API_CALL_CHECK(info, api_call, ret) \
do{\
esp_err_t __err = (api_call);\
if ((ret) != __err) {\
BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
return __err;\
}\
} while(0)
#define OSI_FUNCS_TIME_BLOCKING 0xffffffff
#define OSI_VERSION 0x00010004
#define OSI_MAGIC_VALUE 0xFADEBEAD
/* Types definition
************************************************************************
*/
/* VHCI function interface */
typedef struct vhci_host_callback {
void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
} vhci_host_callback_t;
/* Dram region */
typedef struct {
esp_bt_mode_t mode;
intptr_t start;
intptr_t end;
} btdm_dram_available_region_t;
typedef struct {
void *handle;
} btdm_queue_item_t;
/* OSI function */
struct osi_funcs_t {
uint32_t _version;
xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
void (*_ints_on)(unsigned int mask);
void (*_interrupt_disable)(void);
void (*_interrupt_restore)(void);
void (*_task_yield)(void);
void (*_task_yield_from_isr)(void);
void *(*_semphr_create)(uint32_t max, uint32_t init);
void (*_semphr_delete)(void *semphr);
int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
int32_t (*_semphr_give)(void *semphr);
void *(*_mutex_create)(void);
void (*_mutex_delete)(void *mutex);
int32_t (*_mutex_lock)(void *mutex);
int32_t (*_mutex_unlock)(void *mutex);
void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
void (* _queue_delete)(void *queue);
int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
void (* _task_delete)(void *task_handle);
bool (* _is_in_isr)(void);
int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
void *(* _malloc)(size_t size);
void *(* _malloc_internal)(size_t size);
void (* _free)(void *p);
int32_t (* _read_efuse_mac)(uint8_t mac[6]);
void (* _srand)(unsigned int seed);
int (* _rand)(void);
uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
void (* _btdm_sleep_enter_phase2)(void);
void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
void (* _btdm_sleep_exit_phase3)(void); /* called from task */
bool (* _coex_bt_wakeup_request)(void);
void (* _coex_bt_wakeup_request_end)(void);
int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
int (* _coex_bt_release)(uint32_t event);
int (* _coex_register_bt_cb)(coex_func_cb_t cb);
uint32_t (* _coex_bb_reset_lock)(void);
void (* _coex_bb_reset_unlock)(uint32_t restore);
int (* _coex_schm_register_btdm_callback)(void *callback);
void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
uint32_t (* _coex_schm_interval_get)(void);
uint8_t (* _coex_schm_curr_period_get)(void);
void *(* _coex_schm_curr_phase_get)(void);
int (* _coex_wifi_channel_get)(uint8_t *primary, uint8_t *secondary);
int (* _coex_register_wifi_channel_change_callback)(void *cb);
xt_handler (*_set_isr_l3)(int n, xt_handler f, void *arg);
void (*_interrupt_l3_disable)(void);
void (*_interrupt_l3_restore)(void);
void *(* _customer_queue_create)(uint32_t queue_len, uint32_t item_size);
int (* _coex_version_get)(unsigned int *major, unsigned int *minor, unsigned int *patch);
uint32_t _magic;
};
typedef void (*workitem_handler_t)(void* arg);
/* External functions or values
************************************************************************
*/
/* not for user call, so don't put to include file */
/* OSI */
extern int btdm_osi_funcs_register(void *osi_funcs);
/* Initialise and De-initialise */
extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
extern void btdm_controller_deinit(void);
extern int btdm_controller_enable(esp_bt_mode_t mode);
extern void btdm_controller_disable(void);
extern uint8_t btdm_controller_get_mode(void);
extern const char *btdm_controller_get_compile_version(void);
extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
/* Sleep */
extern void btdm_controller_enable_sleep(bool enable);
extern void btdm_controller_set_sleep_mode(uint8_t mode);
extern uint8_t btdm_controller_get_sleep_mode(void);
extern bool btdm_power_state_active(void);
extern void btdm_wakeup_request(void);
extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
/* Low Power Clock */
extern bool btdm_lpclk_select_src(uint32_t sel);
extern bool btdm_lpclk_set_div(uint32_t div);
/* VHCI */
extern bool API_vhci_host_check_send_available(void);
extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
/* TX power */
extern int ble_txpwr_set(int power_type, int power_level);
extern int ble_txpwr_get(int power_type);
extern int bredr_txpwr_set(int min_power_level, int max_power_level);
extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
extern void bredr_sco_datapath_set(uint8_t data_path);
extern void btdm_controller_scan_duplicate_list_clear(void);
/* Shutdown */
extern void esp_bt_controller_shutdown(void);
extern void sdk_config_set_bt_pll_track_enable(bool enable);
extern void sdk_config_set_uart_flow_ctrl_enable(bool enable);
extern char _bss_start_btdm;
extern char _bss_end_btdm;
extern char _data_start_btdm;
extern char _data_end_btdm;
extern uint32_t _data_start_btdm_rom;
extern uint32_t _data_end_btdm_rom;
extern uint32_t _bt_bss_start;
extern uint32_t _bt_bss_end;
extern uint32_t _nimble_bss_start;
extern uint32_t _nimble_bss_end;
extern uint32_t _btdm_bss_start;
extern uint32_t _btdm_bss_end;
extern uint32_t _bt_data_start;
extern uint32_t _bt_data_end;
extern uint32_t _nimble_data_start;
extern uint32_t _nimble_data_end;
extern uint32_t _btdm_data_start;
extern uint32_t _btdm_data_end;
/* Local Function Declare
*********************************************************************
*/
#if CONFIG_BTDM_CTRL_HLI
static xt_handler set_isr_hlevel_wrapper(int n, xt_handler f, void *arg);
static void interrupt_hlevel_disable(void);
static void interrupt_hlevel_restore(void);
#endif /* CONFIG_BTDM_CTRL_HLI */
static void task_yield(void);
static void task_yield_from_isr(void);
static void *semphr_create_wrapper(uint32_t max, uint32_t init);
static void semphr_delete_wrapper(void *semphr);
static int32_t semphr_take_from_isr_wrapper(void *semphr, void *hptw);
static int32_t semphr_give_from_isr_wrapper(void *semphr, void *hptw);
static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
static int32_t semphr_give_wrapper(void *semphr);
static void *mutex_create_wrapper(void);
static void mutex_delete_wrapper(void *mutex);
static int32_t mutex_lock_wrapper(void *mutex);
static int32_t mutex_unlock_wrapper(void *mutex);
#if CONFIG_BTDM_CTRL_HLI
static void *queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size);
static void queue_delete_hlevel_wrapper(void *queue);
static int32_t queue_send_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t queue_send_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw);
static int32_t queue_recv_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t queue_recv_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw);
#else
static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
static void queue_delete_wrapper(void *queue);
static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
#endif /* CONFIG_BTDM_CTRL_HLI */
static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void task_delete_wrapper(void *task_handle);
static bool is_in_isr_wrapper(void);
static void cause_sw_intr(void *arg);
static int cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
static void *malloc_internal_wrapper(size_t size);
static int32_t read_mac_wrapper(uint8_t mac[6]);
static void srand_wrapper(unsigned int seed);
static int rand_wrapper(void);
static uint32_t btdm_lpcycles_2_us(uint32_t cycles);
static uint32_t btdm_us_2_lpcycles(uint32_t us);
static bool btdm_sleep_check_duration(uint32_t *slot_cnt);
static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
static void btdm_sleep_enter_phase2_wrapper(void);
static void btdm_sleep_exit_phase3_wrapper(void);
static bool coex_bt_wakeup_request(void);
static void coex_bt_wakeup_request_end(void);
static int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
static int coex_bt_release_wrapper(uint32_t event);
static int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
static uint32_t coex_bb_reset_lock_wrapper(void);
static void coex_bb_reset_unlock_wrapper(uint32_t restore);
static int coex_schm_register_btdm_callback_wrapper(void *callback);
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
static uint32_t coex_schm_interval_get_wrapper(void);
static uint8_t coex_schm_curr_period_get_wrapper(void);
static void * coex_schm_curr_phase_get_wrapper(void);
static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary);
static int coex_register_wifi_channel_change_callback_wrapper(void *cb);
static int coex_version_get_wrapper(unsigned int *major, unsigned int *minor, unsigned int *patch);
#if CONFIG_BTDM_CTRL_HLI
static void *customer_queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size);
#endif /* CONFIG_BTDM_CTRL_HLI */
static void interrupt_l3_disable(void);
static void interrupt_l3_restore(void);
static void bt_controller_deinit_internal(void);
/* Local variable definition
***************************************************************************
*/
/* OSI funcs */
static const struct osi_funcs_t osi_funcs_ro = {
._version = OSI_VERSION,
#if CONFIG_BTDM_CTRL_HLI
._set_isr = set_isr_hlevel_wrapper,
._ints_on = xt_ints_on,
._interrupt_disable = interrupt_hlevel_disable,
._interrupt_restore = interrupt_hlevel_restore,
#else
._set_isr = xt_set_interrupt_handler,
._ints_on = xt_ints_on,
._interrupt_disable = interrupt_l3_disable,
._interrupt_restore = interrupt_l3_restore,
#endif /* CONFIG_BTDM_CTRL_HLI */
._task_yield = task_yield,
._task_yield_from_isr = task_yield_from_isr,
._semphr_create = semphr_create_wrapper,
._semphr_delete = semphr_delete_wrapper,
._semphr_take_from_isr = semphr_take_from_isr_wrapper,
._semphr_give_from_isr = semphr_give_from_isr_wrapper,
._semphr_take = semphr_take_wrapper,
._semphr_give = semphr_give_wrapper,
._mutex_create = mutex_create_wrapper,
._mutex_delete = mutex_delete_wrapper,
._mutex_lock = mutex_lock_wrapper,
._mutex_unlock = mutex_unlock_wrapper,
#if CONFIG_BTDM_CTRL_HLI
._queue_create = queue_create_hlevel_wrapper,
._queue_delete = queue_delete_hlevel_wrapper,
._queue_send = queue_send_hlevel_wrapper,
._queue_send_from_isr = queue_send_from_isr_hlevel_wrapper,
._queue_recv = queue_recv_hlevel_wrapper,
._queue_recv_from_isr = queue_recv_from_isr_hlevel_wrapper,
#else
._queue_create = queue_create_wrapper,
._queue_delete = queue_delete_wrapper,
._queue_send = queue_send_wrapper,
._queue_send_from_isr = queue_send_from_isr_wrapper,
._queue_recv = queue_recv_wrapper,
._queue_recv_from_isr = queue_recv_from_isr_wrapper,
#endif /* CONFIG_BTDM_CTRL_HLI */
._task_create = task_create_wrapper,
._task_delete = task_delete_wrapper,
._is_in_isr = is_in_isr_wrapper,
._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
._malloc = malloc,
._malloc_internal = malloc_internal_wrapper,
._free = free,
._read_efuse_mac = read_mac_wrapper,
._srand = srand_wrapper,
._rand = rand_wrapper,
._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
._btdm_sleep_check_duration = btdm_sleep_check_duration,
._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
._btdm_sleep_exit_phase1 = NULL,
._btdm_sleep_exit_phase2 = NULL,
._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
._coex_bt_wakeup_request = coex_bt_wakeup_request,
._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
._coex_bt_request = coex_bt_request_wrapper,
._coex_bt_release = coex_bt_release_wrapper,
._coex_register_bt_cb = coex_register_bt_cb_wrapper,
._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
._coex_schm_register_btdm_callback = coex_schm_register_btdm_callback_wrapper,
._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
._coex_schm_interval_get = coex_schm_interval_get_wrapper,
._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper,
._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper,
._coex_wifi_channel_get = coex_wifi_channel_get_wrapper,
._coex_register_wifi_channel_change_callback = coex_register_wifi_channel_change_callback_wrapper,
._set_isr_l3 = xt_set_interrupt_handler,
._interrupt_l3_disable = interrupt_l3_disable,
._interrupt_l3_restore = interrupt_l3_restore,
#if CONFIG_BTDM_CTRL_HLI
._customer_queue_create = customer_queue_create_hlevel_wrapper,
#else
._customer_queue_create = NULL,
#endif /* CONFIG_BTDM_CTRL_HLI */
._coex_version_get = coex_version_get_wrapper,
._magic = OSI_MAGIC_VALUE,
};
/* the mode column will be modified by release function to indicate the available region */
static btdm_dram_available_region_t btdm_dram_available_region[] = {
//following is .data
{ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
//following is memory which HW will use
{ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
{ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
{ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
{ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
//following is .bss
{ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
{ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
};
/* Reserve the full memory region used by Bluetooth Controller,
* some may be released later at runtime. */
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
/* Static variable declare */
// timestamp when PHY/RF was switched on
static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
// measured average low power clock period in micro seconds
static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
#if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
// used low power clock
static DRAM_ATTR uint8_t btdm_lpclk_sel;
#endif /* #ifdef CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG */
static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
#ifdef CONFIG_PM_ENABLE
static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
static bool s_pm_lock_acquired = true;
static DRAM_ATTR bool s_btdm_allow_light_sleep;
// pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
static void btdm_slp_tmr_callback(void *arg);
#endif /* #ifdef CONFIG_PM_ENABLE */
static inline void esp_bt_power_domain_on(void)
{
// Bluetooth module power up
esp_wifi_bt_power_domain_on();
}
static inline void esp_bt_power_domain_off(void)
{
// Bluetooth module power down
esp_wifi_bt_power_domain_off();
}
static inline void btdm_check_and_init_bb(void)
{
/* init BT-BB if PHY/RF has been switched off since last BT-BB init */
int64_t latest_ts = esp_phy_rf_get_on_ts();
if (latest_ts != s_time_phy_rf_just_enabled ||
s_time_phy_rf_just_enabled == 0) {
btdm_rf_bb_init_phase2();
s_time_phy_rf_just_enabled = latest_ts;
}
}
#if CONFIG_BTDM_CTRL_HLI
struct interrupt_hlevel_cb{
uint32_t status;
uint8_t nested;
};
static DRAM_ATTR struct interrupt_hlevel_cb hli_cb = {
.status = 0,
.nested = 0,
};
static xt_handler set_isr_hlevel_wrapper(int mask, xt_handler f, void *arg)
{
esp_err_t err = hli_intr_register((intr_handler_t) f, arg, DPORT_PRO_INTR_STATUS_0_REG, mask);
if (err == ESP_OK) {
return f;
} else {
return 0;
}
}
static void IRAM_ATTR interrupt_hlevel_disable(void)
{
assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
assert(hli_cb.nested != UCHAR_MAX);
uint32_t status = hli_intr_disable();
if (hli_cb.nested++ == 0) {
hli_cb.status = status;
}
}
static void IRAM_ATTR interrupt_hlevel_restore(void)
{
assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
assert(hli_cb.nested > 0);
if (--hli_cb.nested == 0) {
hli_intr_restore(hli_cb.status);
}
}
#endif /* CONFIG_BTDM_CTRL_HLI */
static void IRAM_ATTR interrupt_l3_disable(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&global_int_mux);
} else {
portENTER_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR interrupt_l3_restore(void)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&global_int_mux);
} else {
portEXIT_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR task_yield(void)
{
vPortYield();
}
static void IRAM_ATTR task_yield_from_isr(void)
{
portYIELD_FROM_ISR();
}
static void *semphr_create_wrapper(uint32_t max, uint32_t init)
{
btdm_queue_item_t *semphr = heap_caps_calloc(1, sizeof(btdm_queue_item_t), MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
assert(semphr);
void *handle = NULL;
/* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
handle = (void *)xSemaphoreCreateCounting(max, init);
assert(handle);
#if CONFIG_BTDM_CTRL_HLI
SemaphoreHandle_t downstream_semaphore = handle;
assert(downstream_semaphore);
hli_queue_handle_t s_semaphore = hli_semaphore_create(max, downstream_semaphore);
assert(s_semaphore);
semphr->handle = (void *)s_semaphore;
#else
semphr->handle = handle;
#endif /* CONFIG_BTDM_CTRL_HLI */
return semphr;
}
static void semphr_delete_wrapper(void *semphr)
{
if (semphr == NULL) {
return;
}
btdm_queue_item_t *semphr_item = (btdm_queue_item_t *)semphr;
void *handle = NULL;
#if CONFIG_BTDM_CTRL_HLI
if (semphr_item->handle) {
handle = ((hli_queue_handle_t)(semphr_item->handle))->downstream;
hli_queue_delete((hli_queue_handle_t)(semphr_item->handle));
}
#else
handle = semphr_item->handle;
#endif /* CONFIG_BTDM_CTRL_HLI */
if (handle) {
vSemaphoreDelete(handle);
}
free(semphr);
}
static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
{
#if CONFIG_BTDM_CTRL_HLI
// Not support it
assert(0);
return 0;
#else
void *handle = ((btdm_queue_item_t *)semphr)->handle;
return (int32_t)xSemaphoreTakeFromISR(handle, hptw);
#endif /* CONFIG_BTDM_CTRL_HLI */
}
static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
{
void *handle = ((btdm_queue_item_t *)semphr)->handle;
#if CONFIG_BTDM_CTRL_HLI
UNUSED(hptw);
assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
return hli_semaphore_give(handle);
#else
return (int32_t)xSemaphoreGiveFromISR(handle, hptw);
#endif /* CONFIG_BTDM_CTRL_HLI */
}
static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
{
bool ret;
void *handle = ((btdm_queue_item_t *)semphr)->handle;
#if CONFIG_BTDM_CTRL_HLI
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
ret = xSemaphoreTake(((hli_queue_handle_t)handle)->downstream, portMAX_DELAY);
} else {
ret = xSemaphoreTake(((hli_queue_handle_t)handle)->downstream, block_time_ms / portTICK_PERIOD_MS);
}
#else
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
ret = xSemaphoreTake(handle, portMAX_DELAY);
} else {
ret = xSemaphoreTake(handle, block_time_ms / portTICK_PERIOD_MS);
}
#endif /* CONFIG_BTDM_CTRL_HLI */
return (int32_t)ret;
}
static int32_t semphr_give_wrapper(void *semphr)
{
void *handle = ((btdm_queue_item_t *)semphr)->handle;
#if CONFIG_BTDM_CTRL_HLI
return (int32_t)xSemaphoreGive(((hli_queue_handle_t)handle)->downstream);
#else
return (int32_t)xSemaphoreGive(handle);
#endif /* CONFIG_BTDM_CTRL_HLI */
}
static void *mutex_create_wrapper(void)
{
return (void *)xSemaphoreCreateMutex();
}
static void mutex_delete_wrapper(void *mutex)
{
vSemaphoreDelete(mutex);
}
static int32_t mutex_lock_wrapper(void *mutex)
{
return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
}
static int32_t mutex_unlock_wrapper(void *mutex)
{
return (int32_t)xSemaphoreGive(mutex);
}
static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
{
btdm_queue_item_t *queue = NULL;
queue = (btdm_queue_item_t*)heap_caps_malloc(sizeof(btdm_queue_item_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
assert(queue);
/* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
queue->handle = xQueueCreate( queue_len, item_size);
assert(queue->handle);
return queue;
}
static void queue_delete_wrapper(void *queue)
{
btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
if (queue_item) {
if(queue_item->handle){
vQueueDelete(queue_item->handle);
}
free(queue_item);
}
}
#if CONFIG_BTDM_CTRL_HLI
static void *queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size)
{
btdm_queue_item_t *queue_item = queue_create_wrapper(queue_len, item_size);
assert(queue_item);
QueueHandle_t downstream_queue = queue_item->handle;
assert(queue_item->handle);
hli_queue_handle_t queue = hli_queue_create(queue_len, item_size, downstream_queue);
assert(queue);
queue_item->handle = queue;
return (void *)queue_item;
}
static void *customer_queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size)
{
btdm_queue_item_t *queue_item = queue_create_wrapper(queue_len, item_size);
assert(queue_item);
QueueHandle_t downstream_queue = queue_item->handle;
assert(queue_item->handle);
hli_queue_handle_t queue = hli_customer_queue_create(queue_len, item_size, downstream_queue);
assert(queue);
queue_item->handle = queue;
return (void *)queue_item;
}
static void queue_delete_hlevel_wrapper(void *queue)
{
if (queue == NULL) {
return;
}
btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
if (queue_item->handle) {
void *handle = ((hli_queue_handle_t)(queue_item->handle))->downstream;
hli_queue_delete(queue_item->handle);
queue_item->handle = handle;
queue_delete_wrapper(queue_item);
}
}
static int32_t queue_send_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
void *handle = ((btdm_queue_item_t *)queue)->handle;
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int32_t)xQueueSend(((hli_queue_handle_t)handle)->downstream, item, portMAX_DELAY);
} else {
return (int32_t)xQueueSend(((hli_queue_handle_t)handle)->downstream, item, block_time_ms / portTICK_PERIOD_MS);
}
}
/**
* Queue send from isr
* @param queue The queue which will send to
* @param item The message which will be send
* @param hptw need do task yield or not
* @return send success or not
* There is an issue here: When the queue is full, it may reture true but it send fail to the queue, sometimes.
* But in Bluetooth controller's isr, We don't care about the return value.
* It only required tp send success when the queue is empty all the time.
* So, this function meets the requirement.
*/
static int32_t IRAM_ATTR queue_send_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw)
{
UNUSED(hptw);
assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
void *handle = ((btdm_queue_item_t *)queue)->handle;
return hli_queue_put(handle, item);
}
static int32_t queue_recv_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
bool ret;
void *handle = ((btdm_queue_item_t *)queue)->handle;
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
ret = xQueueReceive(((hli_queue_handle_t)handle)->downstream, item, portMAX_DELAY);
} else {
ret = xQueueReceive(((hli_queue_handle_t)handle)->downstream, item, block_time_ms / portTICK_PERIOD_MS);
}
return (int32_t)ret;
}
static int32_t IRAM_ATTR queue_recv_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw)
{
// Not support it
assert(0);
return 0;
}
#else
static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int32_t)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
} else {
return (int32_t)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
}
}
static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int32_t)xQueueSendFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
}
static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
bool ret;
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
ret = xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
} else {
ret = xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
}
return (int32_t)ret;
}
static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int32_t)xQueueReceiveFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
}
#endif /* CONFIG_BTDM_CTRL_HLI */
static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < CONFIG_FREERTOS_NUMBER_OF_CORES ? core_id : tskNO_AFFINITY));
}
static void task_delete_wrapper(void *task_handle)
{
vTaskDelete(task_handle);
}
static bool IRAM_ATTR is_in_isr_wrapper(void)
{
return !xPortCanYield();
}
static void IRAM_ATTR cause_sw_intr(void *arg)
{
/* just convert void * to int, because the width is the same */
uint32_t intr_no = (uint32_t)arg;
XTHAL_SET_INTSET((1<<intr_no));
}
static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
{
esp_err_t err = ESP_OK;
#if CONFIG_FREERTOS_UNICORE
cause_sw_intr((void *)intr_no);
#else /* CONFIG_FREERTOS_UNICORE */
if (xPortGetCoreID() == core_id) {
cause_sw_intr((void *)intr_no);
} else {
err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
}
#endif /* !CONFIG_FREERTOS_UNICORE */
return err;
}
static void *malloc_internal_wrapper(size_t size)
{
return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
}
static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
{
int ret = esp_read_mac(mac, ESP_MAC_BT);
ESP_LOGI(BTDM_LOG_TAG, "Bluetooth MAC: %02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return ret;
}
static void IRAM_ATTR srand_wrapper(unsigned int seed)
{
/* empty function */
}
static int IRAM_ATTR rand_wrapper(void)
{
return (int)esp_random();
}
static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
{
// The number of lp cycles should not lead to overflow. Thrs: 100s
// clock measurement is conducted
uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
return (uint32_t)us;
}
/*
* @brief Converts a duration in slots into a number of low power clock cycles.
*/
static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
{
// The number of sleep duration(us) should not lead to overflow. Thrs: 100s
// Compute the sleep duration in us to low power clock cycles, with calibration result applied
// clock measurement is conducted
uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
return (uint32_t)cycles;
}
static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
{
if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
return false;
}
/* wake up in advance considering the delay in enabling PHY/RF */
*slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
return true;
}
static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
{
#ifdef CONFIG_PM_ENABLE
// start a timer to wake up and acquire the pm_lock before modem_sleep awakes
uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
#define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
// allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
// and set the timer in advance
uint32_t uncertainty = (us_to_sleep >> 11);
if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
}
if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
}
#endif
}
static void btdm_sleep_enter_phase2_wrapper(void)
{
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_phy_disable(PHY_MODEM_BT);
#ifdef CONFIG_PM_ENABLE
if (s_pm_lock_acquired) {
esp_pm_lock_release(s_pm_lock);
s_pm_lock_acquired = false;
}
#endif
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_phy_disable(PHY_MODEM_BT);
// pause bluetooth baseband
periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
}
}
static void btdm_sleep_exit_phase3_wrapper(void)
{
#ifdef CONFIG_PM_ENABLE
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
#endif
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_phy_enable(PHY_MODEM_BT);
btdm_check_and_init_bb();
#ifdef CONFIG_PM_ENABLE
esp_timer_stop(s_btdm_slp_tmr);
#endif
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
// resume bluetooth baseband
periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
esp_phy_enable(PHY_MODEM_BT);
}
}
#ifdef CONFIG_PM_ENABLE
static void btdm_slp_tmr_customer_callback(void * arg)
{
(void)(arg);
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
}
static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
{
(void)(arg);
btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
}
#endif
#define BTDM_ASYNC_WAKEUP_REQ_HCI 0
#define BTDM_ASYNC_WAKEUP_REQ_COEX 1
#define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
#define BTDM_ASYNC_WAKEUP_REQMAX 3
static void btdm_wakeup_request_callback(void * arg)
{
(void)(arg);
#if CONFIG_PM_ENABLE
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
esp_timer_stop(s_btdm_slp_tmr);
#endif
btdm_wakeup_request();
semphr_give_wrapper(s_wakeup_req_sem);
}
static bool async_wakeup_request(int event)
{
bool do_wakeup_request = false;
switch (event) {
case BTDM_ASYNC_WAKEUP_REQ_HCI:
btdm_in_wakeup_requesting_set(true);
// NO break
case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
if (!btdm_power_state_active()) {
do_wakeup_request = true;
btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
}
break;
case BTDM_ASYNC_WAKEUP_REQ_COEX:
if (!btdm_power_state_active()) {
do_wakeup_request = true;
#if CONFIG_PM_ENABLE
if (!s_pm_lock_acquired) {
s_pm_lock_acquired = true;
esp_pm_lock_acquire(s_pm_lock);
}
esp_timer_stop(s_btdm_slp_tmr);
#endif
btdm_wakeup_request();
}
break;
default:
return false;
}
return do_wakeup_request;
}
static void async_wakeup_request_end(int event)
{
bool request_lock = false;
switch (event) {
case BTDM_ASYNC_WAKEUP_REQ_HCI:
request_lock = true;
break;
case BTDM_ASYNC_WAKEUP_REQ_COEX:
case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
request_lock = false;
break;
default:
return;
}
if (request_lock) {
btdm_in_wakeup_requesting_set(false);
}
return;
}
static bool coex_bt_wakeup_request(void)
{
return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
}
static void coex_bt_wakeup_request_end(void)
{
async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
return;
}
static int IRAM_ATTR coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_bt_request(event, latency, duration);
#else
return 0;
#endif
}
static int IRAM_ATTR coex_bt_release_wrapper(uint32_t event)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_bt_release(event);
#else
return 0;
#endif
}
static int coex_register_bt_cb_wrapper(coex_func_cb_t cb)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_register_bt_cb(cb);
#else
return 0;
#endif
}
static uint32_t IRAM_ATTR coex_bb_reset_lock_wrapper(void)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_bb_reset_lock();
#else
return 0;
#endif
}
static void IRAM_ATTR coex_bb_reset_unlock_wrapper(uint32_t restore)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_bb_reset_unlock(restore);
#endif
}
static int coex_schm_register_btdm_callback_wrapper(void *callback)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_schm_register_callback(COEX_SCHM_CALLBACK_TYPE_BT, callback);
#else
return 0;
#endif
}
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_clear(type, status);
#endif
}
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_set(type, status);
#endif
}
static uint32_t coex_schm_interval_get_wrapper(void)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_schm_interval_get();
#else
return 0;
#endif
}
static uint8_t coex_schm_curr_period_get_wrapper(void)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_schm_curr_period_get();
#else
return 1;
#endif
}
static void * coex_schm_curr_phase_get_wrapper(void)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_schm_curr_phase_get();
#else
return NULL;
#endif
}
static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_wifi_channel_get(primary, secondary);
#else
return -1;
#endif
}
static int coex_register_wifi_channel_change_callback_wrapper(void *cb)
{
#if CONFIG_SW_COEXIST_ENABLE
return coex_register_wifi_channel_change_callback(cb);
#else
return -1;
#endif
}
static int coex_version_get_wrapper(unsigned int *major, unsigned int *minor, unsigned int *patch)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_version_t version;
ESP_ERROR_CHECK(coex_version_get_value(&version));
*major = (unsigned int)version.major;
*minor = (unsigned int)version.minor;
*patch = (unsigned int)version.patch;
return 0;
#endif
return -1;
}
bool esp_vhci_host_check_send_available(void)
{
return API_vhci_host_check_send_available();
}
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
API_vhci_host_send_packet(data, len);
async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
}
esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
}
static uint32_t btdm_config_mask_load(void)
{
uint32_t mask = 0x0;
#if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
mask |= BTDM_CFG_HCI_UART;
#endif
#if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
#endif
#if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
#endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
return mask;
}
static void btdm_controller_mem_init(void)
{
/* initialise .data section */
memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
//initial em, .bss section
for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
}
}
}
static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
{
int ret = heap_caps_add_region(start, end);
/* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
* is too small to fit a heap. This cannot be termed as a fatal error and hence
* we replace it by ESP_OK
*/
if (ret == ESP_ERR_INVALID_SIZE) {
return ESP_OK;
}
return ret;
}
esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
bool update = true;
intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
//already released
if (!(mode & btdm_dram_available_region[0].mode)) {
return ESP_ERR_INVALID_STATE;
}
for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
//skip the share mode, idle mode and other mode
if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
|| (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
//clear the bit of the mode which will be released
btdm_dram_available_region[i].mode &= ~mode;
continue;
} else {
//clear the bit of the mode which will be released
btdm_dram_available_region[i].mode &= ~mode;
}
if (update) {
mem_start = btdm_dram_available_region[i].start;
mem_end = btdm_dram_available_region[i].end;
update = false;
}
if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
mem_end = btdm_dram_available_region[i].end;
if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
&& (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
&& mem_end == btdm_dram_available_region[i+1].start) {
continue;
} else {
ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
update = true;
}
} else {
mem_end = btdm_dram_available_region[i].end;
ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
update = true;
}
}
if (mode == ESP_BT_MODE_BTDM) {
mem_start = (intptr_t)&_btdm_bss_start;
mem_end = (intptr_t)&_btdm_bss_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
mem_start = (intptr_t)&_btdm_data_start;
mem_end = (intptr_t)&_btdm_data_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
}
return ESP_OK;
}
esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
int ret;
intptr_t mem_start, mem_end;
ret = esp_bt_controller_mem_release(mode);
if (ret != ESP_OK) {
return ret;
}
if (mode == ESP_BT_MODE_BTDM) {
mem_start = (intptr_t)&_bt_bss_start;
mem_end = (intptr_t)&_bt_bss_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
mem_start = (intptr_t)&_bt_data_start;
mem_end = (intptr_t)&_bt_data_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
mem_start = (intptr_t)&_nimble_bss_start;
mem_end = (intptr_t)&_nimble_bss_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
mem_start = (intptr_t)&_nimble_data_start;
mem_end = (intptr_t)&_nimble_data_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
}
return ESP_OK;
}
#if CONFIG_BTDM_CTRL_HLI
static void hli_queue_setup_cb(void* arg)
{
hli_queue_setup();
}
static void hli_queue_setup_pinned_to_core(int core_id)
{
#if CONFIG_FREERTOS_UNICORE
hli_queue_setup_cb(NULL);
#else /* CONFIG_FREERTOS_UNICORE */
if (xPortGetCoreID() == core_id) {
hli_queue_setup_cb(NULL);
} else {
esp_ipc_call(core_id, hli_queue_setup_cb, NULL);
}
#endif /* !CONFIG_FREERTOS_UNICORE */
}
#endif /* CONFIG_BTDM_CTRL_HLI */
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
{
esp_err_t err;
uint32_t btdm_cfg_mask = 0;
#if CONFIG_BTDM_CTRL_HLI
hli_queue_setup_pinned_to_core(CONFIG_BTDM_CTRL_PINNED_TO_CORE);
#endif /* CONFIG_BTDM_CTRL_HLI */
//if all the bt available memory was already released, cannot initialize bluetooth controller
if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
return ESP_ERR_INVALID_STATE;
}
osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
if (osi_funcs_p == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
return ESP_ERR_INVALID_ARG;
}
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
if (cfg == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
|| cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
return ESP_ERR_INVALID_ARG;
}
//overwrite some parameters
cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
|| ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
|| ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
return ESP_ERR_INVALID_ARG;
}
ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
s_wakeup_req_sem = semphr_create_wrapper(1, 0);
if (s_wakeup_req_sem == NULL) {
err = ESP_ERR_NO_MEM;
goto error;
}
esp_phy_modem_init();
esp_bt_power_domain_on();
btdm_controller_mem_init();
periph_module_enable(PERIPH_BT_MODULE);
#ifdef CONFIG_PM_ENABLE
s_btdm_allow_light_sleep = false;
#endif
// set default sleep clock cycle and its fractional bits
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
#if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
#if CONFIG_BTDM_CTRL_LPCLK_SEL_EXT_32K_XTAL
// check whether or not EXT_CRYS is working
if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // External 32kHz XTAL
#ifdef CONFIG_PM_ENABLE
s_btdm_allow_light_sleep = true;
#endif
} else {
ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
"light sleep mode will not be able to apply when bluetooth is enabled");
btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
}
#else
btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
#endif
bool select_src_ret __attribute__((unused));
bool set_div_ret __attribute__((unused));
if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
set_div_ret = btdm_lpclk_set_div(esp_clk_xtal_freq() * 2 / MHZ - 1);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
} else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
set_div_ret = btdm_lpclk_set_div(0);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
(1000000 >> (15 - RTC_CLK_CAL_FRACT));
assert(btdm_lpcycle_us != 0);
}
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
#elif CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_EVED
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
#else
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
#endif
#if CONFIG_BTDM_CTRL_HCI_UART_FLOW_CTRL_EN
sdk_config_set_uart_flow_ctrl_enable(true);
#else
sdk_config_set_uart_flow_ctrl_enable(false);
#endif
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
goto error;
}
}
if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
goto error;
}
esp_timer_create_args_t create_args = {
.callback = btdm_slp_tmr_callback,
.arg = NULL,
.name = "btSlp"
};
if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
goto error;
}
s_pm_lock_acquired = true;
#endif
#if CONFIG_SW_COEXIST_ENABLE
coex_init();
#endif
btdm_cfg_mask = btdm_config_mask_load();
if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
err = ESP_ERR_NO_MEM;
goto error;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
return ESP_OK;
error:
bt_controller_deinit_internal();
return err;
}
esp_err_t esp_bt_controller_deinit(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
btdm_controller_deinit();
bt_controller_deinit_internal();
return ESP_OK;
}
static void bt_controller_deinit_internal(void)
{
periph_module_disable(PERIPH_BT_MODULE);
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
esp_pm_lock_delete(s_light_sleep_pm_lock);
s_light_sleep_pm_lock = NULL;
}
if (s_pm_lock != NULL) {
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
}
if (s_btdm_slp_tmr != NULL) {
esp_timer_stop(s_btdm_slp_tmr);
esp_timer_delete(s_btdm_slp_tmr);
s_btdm_slp_tmr = NULL;
}
s_pm_lock_acquired = false;
#endif
if (s_wakeup_req_sem) {
semphr_delete_wrapper(s_wakeup_req_sem);
s_wakeup_req_sem = NULL;
}
if (osi_funcs_p) {
free(osi_funcs_p);
osi_funcs_p = NULL;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
btdm_lpcycle_us = 0;
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
esp_bt_power_domain_off();
esp_phy_modem_deinit();
}
static void bt_controller_shutdown(void* arg)
{
esp_bt_controller_shutdown();
}
static void bt_shutdown(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return;
}
#if !CONFIG_FREERTOS_UNICORE
esp_ipc_call_blocking(CONFIG_BTDM_CTRL_PINNED_TO_CORE, bt_controller_shutdown, NULL);
#else
bt_controller_shutdown(NULL);
#endif
esp_phy_disable(PHY_MODEM_BT);
return;
}
esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
int ret;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
//As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
if (mode != btdm_controller_get_mode()) {
return ESP_ERR_INVALID_ARG;
}
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
esp_pm_lock_acquire(s_light_sleep_pm_lock);
}
esp_pm_lock_acquire(s_pm_lock);
#endif
esp_phy_enable(PHY_MODEM_BT);
#if CONFIG_SW_COEXIST_ENABLE
coex_enable();
#endif
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
btdm_controller_enable_sleep(true);
}
sdk_config_set_bt_pll_track_enable(true);
// inititalize bluetooth baseband
btdm_check_and_init_bb();
ret = btdm_controller_enable(mode);
if (ret != 0) {
#if CONFIG_SW_COEXIST_ENABLE
coex_disable();
#endif
esp_phy_disable(PHY_MODEM_BT);
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
esp_pm_lock_release(s_light_sleep_pm_lock);
}
esp_pm_lock_release(s_pm_lock);
#endif
return ESP_ERR_INVALID_STATE;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
ret = esp_register_shutdown_handler(bt_shutdown);
if (ret != ESP_OK) {
ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret);
}
return ESP_OK;
}
esp_err_t esp_bt_controller_disable(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
// disable modem sleep and wake up from sleep mode
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
btdm_controller_enable_sleep(false);
async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
while (!btdm_power_state_active()) {
esp_rom_delay_us(1000);
}
}
btdm_controller_disable();
#if CONFIG_SW_COEXIST_ENABLE
coex_disable();
#endif
esp_phy_disable(PHY_MODEM_BT);
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
esp_unregister_shutdown_handler(bt_shutdown);
#ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) {
esp_pm_lock_release(s_light_sleep_pm_lock);
}
esp_pm_lock_release(s_pm_lock);
#endif
return ESP_OK;
}
esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
return btdm_controller_status;
}
/* extra functions */
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
if (ble_txpwr_set(power_type, power_level) != 0) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
return (esp_power_level_t)ble_txpwr_get(power_type);
}
esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
{
esp_err_t err;
int ret;
ret = bredr_txpwr_set(min_power_level, max_power_level);
if (ret == 0) {
err = ESP_OK;
} else if (ret == -1) {
err = ESP_ERR_INVALID_ARG;
} else {
err = ESP_ERR_INVALID_STATE;
}
return err;
}
esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
{
if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t esp_bt_sleep_enable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
btdm_controller_enable_sleep (true);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
esp_err_t esp_bt_sleep_disable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
btdm_controller_enable_sleep (false);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
bredr_sco_datapath_set(data_path);
return ESP_OK;
}
esp_err_t esp_ble_scan_dupilcate_list_flush(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
btdm_controller_scan_duplicate_list_clear();
return ESP_OK;
}
/**
* This function re-write controller's function,
* As coredump can not show paramerters in function which is in a .a file.
*
* After coredump fixing this issue, just delete this function.
*/
void IRAM_ATTR r_assert(const char *condition, int param0, int param1, const char *file, int line)
{
__asm__ __volatile__("ill\n");
}
#endif /* CONFIG_BT_ENABLED */