mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
fe94d07dfe
this issue is mainly exposed when using larger (4096) client key in TLS mutual auth, since it uses multiplications > 2048 when mbedtls_mpi_mul_mpi is used in recursion, which works only if both operands point to different location than result since mpi_mult_mpi_overlong() called mbedtls_mpi_grow() to reallocate buffers used in previous pointer arithmetics and thus corrupting it. Fixed by growing the mpi buffer before calling mpi_mult_mpi_overlong()
690 lines
21 KiB
C
690 lines
21 KiB
C
/**
|
|
* \brief Multi-precision integer library, ESP32 hardware accelerated parts
|
|
*
|
|
* based on mbedTLS implementation
|
|
*
|
|
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
|
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <malloc.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include "mbedtls/bignum.h"
|
|
#include "rom/bigint.h"
|
|
#include "soc/hwcrypto_reg.h"
|
|
#include "esp_system.h"
|
|
#include "esp_log.h"
|
|
#include "esp_intr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_attr.h"
|
|
|
|
#include "soc/dport_reg.h"
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "driver/periph_ctrl.h"
|
|
|
|
static const __attribute__((unused)) char *TAG = "bignum";
|
|
|
|
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
|
#define biL (ciL << 3) /* bits in limb */
|
|
|
|
#if defined(CONFIG_MBEDTLS_MPI_USE_INTERRUPT)
|
|
static SemaphoreHandle_t op_complete_sem;
|
|
|
|
static IRAM_ATTR void rsa_complete_isr(void *arg)
|
|
{
|
|
BaseType_t higher_woken;
|
|
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
|
xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
|
|
if (higher_woken) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
static void rsa_isr_initialise()
|
|
{
|
|
if (op_complete_sem == NULL) {
|
|
op_complete_sem = xSemaphoreCreateBinary();
|
|
esp_intr_alloc(ETS_RSA_INTR_SOURCE, 0, rsa_complete_isr, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_MBEDTLS_MPI_USE_INTERRUPT */
|
|
|
|
static _lock_t mpi_lock;
|
|
|
|
void esp_mpi_acquire_hardware( void )
|
|
{
|
|
/* newlib locks lazy initialize on ESP-IDF */
|
|
_lock_acquire(&mpi_lock);
|
|
|
|
/* Enable RSA hardware */
|
|
periph_module_enable(PERIPH_RSA_MODULE);
|
|
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
|
|
|
while(DPORT_REG_READ(RSA_CLEAN_REG) != 1);
|
|
// Note: from enabling RSA clock to here takes about 1.3us
|
|
|
|
#ifdef CONFIG_MBEDTLS_MPI_USE_INTERRUPT
|
|
rsa_isr_initialise();
|
|
#endif
|
|
}
|
|
|
|
void esp_mpi_release_hardware( void )
|
|
{
|
|
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
|
|
|
/* Disable RSA hardware */
|
|
periph_module_disable(PERIPH_RSA_MODULE);
|
|
|
|
_lock_release(&mpi_lock);
|
|
}
|
|
|
|
/* Number of words used to hold 'mpi', rounded up to nearest
|
|
16 words (512 bits) to match hardware support.
|
|
|
|
Note that mpi->n (size of memory buffer) may be higher than this
|
|
number, if the high bits are mostly zeroes.
|
|
|
|
This implementation may cause the caller to leak a small amount of
|
|
timing information when an operation is performed (length of a
|
|
given mpi value, rounded to nearest 512 bits), but not all mbedTLS
|
|
RSA operations succeed if we use mpi->N as-is (buffers are too long).
|
|
*/
|
|
static inline size_t hardware_words_needed(const mbedtls_mpi *mpi)
|
|
{
|
|
size_t res = 1;
|
|
for(size_t i = 0; i < mpi->n; i++) {
|
|
if( mpi->p[i] != 0 ) {
|
|
res = i + 1;
|
|
}
|
|
}
|
|
res = (res + 0xF) & ~0xF;
|
|
return res;
|
|
}
|
|
|
|
/* Convert number of bits to number of words, rounded up to nearest
|
|
512 bit (16 word) block count.
|
|
*/
|
|
static inline size_t bits_to_hardware_words(size_t num_bits)
|
|
{
|
|
return ((num_bits + 511) / 512) * 16;
|
|
}
|
|
|
|
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
|
|
|
If num_words is higher than the number of words in the bignum then
|
|
these additional words will be zeroed in the memory buffer.
|
|
|
|
As this function only writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START()
|
|
is required.
|
|
*/
|
|
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
|
{
|
|
uint32_t *pbase = (uint32_t *)mem_base;
|
|
uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
|
|
|
|
/* Copy MPI data to memory block registers */
|
|
for (int i = 0; i < copy_words; i++) {
|
|
pbase[i] = mpi->p[i];
|
|
}
|
|
|
|
/* Zero any remaining memory block data */
|
|
for (int i = copy_words; i < num_words; i++) {
|
|
pbase[i] = 0;
|
|
}
|
|
|
|
/* Note: not executing memw here, can do it before we start a bignum operation */
|
|
}
|
|
|
|
/* Read mbedTLS MPI bignum back from hardware memory block.
|
|
|
|
Reads num_words words from block.
|
|
|
|
Can return a failure result if fails to grow the MPI result.
|
|
|
|
Cannot be called inside DPORT_STALL_OTHER_CPU_START() (as may allocate memory).
|
|
*/
|
|
static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
|
{
|
|
int ret = 0;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(x, num_words) );
|
|
|
|
/* Copy data from memory block registers */
|
|
esp_dport_access_read_buffer(x->p, mem_base, num_words);
|
|
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
|
than num_words */
|
|
for(size_t i = num_words; i < x->n; i++) {
|
|
x->p[i] = 0;
|
|
}
|
|
|
|
asm volatile ("memw");
|
|
cleanup:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
|
|
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
|
|
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
|
|
* simple algorithm from an article by Dusse and Kaliski to efficiently
|
|
* find N0' from N0 and b
|
|
*/
|
|
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
|
|
{
|
|
int i;
|
|
uint64_t t = 1;
|
|
uint64_t two_2_i_minus_1 = 2; /* 2^(i-1) */
|
|
uint64_t two_2_i = 4; /* 2^i */
|
|
uint64_t N = M->p[0];
|
|
|
|
for (i = 2; i <= 32; i++) {
|
|
if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
|
|
t += two_2_i_minus_1;
|
|
}
|
|
|
|
two_2_i_minus_1 <<= 1;
|
|
two_2_i <<= 1;
|
|
}
|
|
|
|
return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
|
|
}
|
|
|
|
/* Calculate Rinv = RR^2 mod M, where:
|
|
*
|
|
* R = b^n where b = 2^32, n=num_words,
|
|
* R = 2^N (where N=num_bits)
|
|
* RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
|
|
*
|
|
* This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
|
|
* so caller should cache the result where possible.
|
|
*
|
|
* DO NOT call this function while holding esp_mpi_acquire_hardware().
|
|
*
|
|
*/
|
|
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
|
|
{
|
|
int ret;
|
|
size_t num_bits = num_words * 32;
|
|
mbedtls_mpi RR;
|
|
mbedtls_mpi_init(&RR);
|
|
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
|
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free(&RR);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Begin an RSA operation. op_reg specifies which 'START' register
|
|
to write to.
|
|
|
|
Because the only DPORT operations here are writes,
|
|
does not need protecting via DPORT_STALL_OTHER_CPU_START();
|
|
*/
|
|
static inline void start_op(uint32_t op_reg)
|
|
{
|
|
/* Clear interrupt status */
|
|
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
|
|
|
/* Note: above REG_WRITE includes a memw, so we know any writes
|
|
to the memory blocks are also complete. */
|
|
|
|
DPORT_REG_WRITE(op_reg, 1);
|
|
}
|
|
|
|
/* Wait for an RSA operation to complete.
|
|
|
|
This should NOT be called inside a DPORT_STALL_OTHER_CPU_START(), as it will stall the other CPU for an unacceptably long
|
|
period (and - depending on config - may require interrupts enabled).
|
|
*/
|
|
static inline void wait_op_complete(uint32_t op_reg)
|
|
{
|
|
#ifdef CONFIG_MBEDTLS_MPI_USE_INTERRUPT
|
|
if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
|
|
ESP_LOGE(TAG, "Timed out waiting for RSA operation (op_reg 0x%x int_reg 0x%x)",
|
|
op_reg, DPORT_REG_READ(RSA_INTERRUPT_REG));
|
|
abort(); /* indicates a fundamental problem with driver */
|
|
}
|
|
#else
|
|
while(DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
|
|
{ }
|
|
|
|
/* clear the interrupt */
|
|
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
|
#endif
|
|
|
|
}
|
|
|
|
/* Sub-stages of modulo multiplication/exponentiation operations */
|
|
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
|
|
|
/* Z = (X * Y) mod M
|
|
|
|
Not an mbedTLS function
|
|
*/
|
|
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
|
{
|
|
int ret;
|
|
size_t num_words = hardware_words_needed(M);
|
|
mbedtls_mpi Rinv;
|
|
mbedtls_mpi_uint Mprime;
|
|
|
|
/* Calculate and load the first stage montgomery multiplication */
|
|
mbedtls_mpi_init(&Rinv);
|
|
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
|
|
Mprime = modular_inverse(M);
|
|
|
|
esp_mpi_acquire_hardware();
|
|
|
|
/* (As the following are all writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START is required.) */
|
|
|
|
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
|
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
|
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
|
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
|
|
DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
|
|
|
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
|
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
|
|
|
/* Execute first stage montgomery multiplication */
|
|
start_op(RSA_MULT_START_REG);
|
|
|
|
wait_op_complete(RSA_MULT_START_REG);
|
|
|
|
/* execute second stage */
|
|
ret = modular_multiply_finish(Z, X, Y, num_words);
|
|
|
|
esp_mpi_release_hardware();
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free(&Rinv);
|
|
return ret;
|
|
}
|
|
|
|
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
|
|
|
/*
|
|
* Sliding-window exponentiation: Z = X^Y mod M (HAC 14.85)
|
|
*
|
|
* _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
|
|
*
|
|
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
|
*
|
|
*/
|
|
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
|
|
{
|
|
int ret = 0;
|
|
size_t z_words = hardware_words_needed(Z);
|
|
size_t x_words = hardware_words_needed(X);
|
|
size_t y_words = hardware_words_needed(Y);
|
|
size_t m_words = hardware_words_needed(M);
|
|
size_t num_words;
|
|
|
|
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
|
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
|
mbedtls_mpi_uint Mprime;
|
|
|
|
if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
|
|
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
|
|
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
|
|
return mbedtls_mpi_lset(Z, 1);
|
|
}
|
|
|
|
/* "all numbers must be the same length", so choose longest number
|
|
as cardinal length of operation...
|
|
*/
|
|
num_words = z_words;
|
|
if (x_words > num_words) {
|
|
num_words = x_words;
|
|
}
|
|
if (y_words > num_words) {
|
|
num_words = y_words;
|
|
}
|
|
if (m_words > num_words) {
|
|
num_words = m_words;
|
|
}
|
|
|
|
if (num_words * 32 > 4096) {
|
|
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
}
|
|
|
|
/* Determine RR pointer, either _RR for cached value
|
|
or local RR_new */
|
|
if (_Rinv == NULL) {
|
|
mbedtls_mpi_init(&Rinv_new);
|
|
Rinv = &Rinv_new;
|
|
} else {
|
|
Rinv = _Rinv;
|
|
}
|
|
if (Rinv->p == NULL) {
|
|
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
|
|
}
|
|
|
|
Mprime = modular_inverse(M);
|
|
|
|
esp_mpi_acquire_hardware();
|
|
|
|
/* (As the following are all writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START is required.) */
|
|
|
|
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
|
DPORT_REG_WRITE(RSA_MODEXP_MODE_REG, (num_words / 16) - 1);
|
|
|
|
/* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
|
|
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
|
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
|
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
|
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
|
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
|
|
|
start_op(RSA_START_MODEXP_REG);
|
|
|
|
wait_op_complete(RSA_START_MODEXP_REG);
|
|
|
|
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
|
esp_mpi_release_hardware();
|
|
|
|
// Compensate for negative X
|
|
if (X->s == -1 && (Y->p[0] & 1) != 0) {
|
|
Z->s = -1;
|
|
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
|
|
} else {
|
|
Z->s = 1;
|
|
}
|
|
|
|
cleanup:
|
|
if (_Rinv == NULL) {
|
|
mbedtls_mpi_free(&Rinv_new);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
|
|
|
/* Second & final step of a modular multiply - load second multiplication
|
|
* factor Y, run the multiply, read back the result into Z.
|
|
*
|
|
* Called from both mbedtls_mpi_exp_mod and mbedtls_mpi_mod_mpi.
|
|
*
|
|
* @param Z result value
|
|
* @param X first multiplication factor (used to set sign of result).
|
|
* @param Y second multiplication factor.
|
|
* @param num_words size of modulo operation, in words (limbs).
|
|
* Should already be rounded up to a multiple of 16 words (512 bits) & range checked.
|
|
*
|
|
* Caller must have already called esp_mpi_acquire_hardware().
|
|
*/
|
|
static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Load Y to X input memory block, rerun */
|
|
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, num_words);
|
|
|
|
start_op(RSA_MULT_START_REG);
|
|
|
|
wait_op_complete(RSA_MULT_START_REG);
|
|
|
|
/* Read result into Z */
|
|
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
|
|
|
Z->s = X->s * Y->s;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
|
|
|
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t Y_bits, size_t words_result);
|
|
|
|
/* Z = X * Y */
|
|
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
|
{
|
|
int ret = 0;
|
|
size_t bits_x, bits_y, words_x, words_y, words_mult, words_z;
|
|
|
|
/* Count words needed for X & Y in hardware */
|
|
bits_x = mbedtls_mpi_bitlen(X);
|
|
bits_y = mbedtls_mpi_bitlen(Y);
|
|
/* Convert bit counts to words, rounded up to 512-bit
|
|
(16 word) blocks */
|
|
words_x = bits_to_hardware_words(bits_x);
|
|
words_y = bits_to_hardware_words(bits_y);
|
|
|
|
/* Short-circuit eval if either argument is 0 or 1.
|
|
|
|
This is needed as the mpi modular division
|
|
argument will sometimes call in here when one
|
|
argument is too large for the hardware unit, but the other
|
|
argument is zero or one.
|
|
|
|
This leaks some timing information, although overall there is a
|
|
lot less timing variation than a software MPI approach.
|
|
*/
|
|
if (bits_x == 0 || bits_y == 0) {
|
|
mbedtls_mpi_lset(Z, 0);
|
|
return 0;
|
|
}
|
|
if (bits_x == 1) {
|
|
ret = mbedtls_mpi_copy(Z, Y);
|
|
Z->s *= X->s;
|
|
return ret;
|
|
}
|
|
if (bits_y == 1) {
|
|
ret = mbedtls_mpi_copy(Z, X);
|
|
Z->s *= Y->s;
|
|
return ret;
|
|
}
|
|
|
|
words_mult = (words_x > words_y ? words_x : words_y);
|
|
|
|
/* Result Z has to have room for double the larger factor */
|
|
words_z = words_mult * 2;
|
|
|
|
/* Grow Z to result size early, avoid interim allocations */
|
|
mbedtls_mpi_grow(Z, words_z);
|
|
|
|
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
|
|
(it assumes result is double longest factor, and result is max 4096 bits.)
|
|
|
|
However, we can fail over to mod_mult for up to 4096 bits of result (modulo
|
|
multiplication doesn't have the same restriction, so result is simply the
|
|
number of bits in X plus number of bits in in Y.)
|
|
*/
|
|
if (words_mult * 32 > 2048) {
|
|
/* Calculate new length of Z */
|
|
words_z = bits_to_hardware_words(bits_x + bits_y);
|
|
if (words_z * 32 <= 4096) {
|
|
/* Note: it's possible to use mpi_mult_mpi_overlong
|
|
for this case as well, but it's very slightly
|
|
slower and requires a memory allocation.
|
|
*/
|
|
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, words_z);
|
|
} else {
|
|
/* Still too long for the hardware unit... */
|
|
if(bits_y > bits_x) {
|
|
return mpi_mult_mpi_overlong(Z, X, Y, bits_y, words_z);
|
|
} else {
|
|
return mpi_mult_mpi_overlong(Z, Y, X, bits_x, words_z);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Otherwise, we can use the (faster) multiply hardware unit */
|
|
|
|
esp_mpi_acquire_hardware();
|
|
|
|
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
|
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, words_mult);
|
|
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + words_mult * 4, Y, words_mult);
|
|
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
|
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
|
*/
|
|
|
|
DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
|
|
|
|
/* "mode" register loaded with number of 512-bit blocks in result,
|
|
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
|
*/
|
|
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (words_z / 16) + 7);
|
|
|
|
start_op(RSA_MULT_START_REG);
|
|
|
|
wait_op_complete(RSA_MULT_START_REG);
|
|
|
|
/* Read back the result */
|
|
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, words_z);
|
|
|
|
Z->s = X->s * Y->s;
|
|
|
|
esp_mpi_release_hardware();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
|
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
|
A or B are >2048 bits so can't use the standard multiplication method.
|
|
|
|
Result (A bits + B bits) must still be less than 4096 bits.
|
|
|
|
This case is simpler than the general case modulo multiply of
|
|
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
|
|
|
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
|
isn't actually modulo anything.
|
|
* Mprime and Rinv are therefore predictable as follows:
|
|
Mprime = 1
|
|
Rinv = 1
|
|
|
|
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
|
*/
|
|
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Load coefficients to hardware */
|
|
esp_mpi_acquire_hardware();
|
|
|
|
/* M = 2^num_words - 1, so block is entirely FF */
|
|
for(int i = 0; i < num_words; i++) {
|
|
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
|
}
|
|
/* Mprime = 1 */
|
|
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
|
|
|
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
|
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
|
|
|
/* Load X */
|
|
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
|
|
|
/* Rinv = 1 */
|
|
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
|
for(int i = 1; i < num_words; i++) {
|
|
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
|
}
|
|
|
|
start_op(RSA_MULT_START_REG);
|
|
|
|
wait_op_complete(RSA_MULT_START_REG);
|
|
|
|
/* finish the modular multiplication */
|
|
ret = modular_multiply_finish(Z, X, Y, num_words);
|
|
|
|
esp_mpi_release_hardware();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
|
|
into two halves.
|
|
|
|
Y must be the longer operand
|
|
|
|
Slice Y into Yp, Ypp such that:
|
|
Yp = lower 'b' bits of Y
|
|
Ypp = upper 'b' bits of Y (right shifted)
|
|
|
|
Such that
|
|
Z = X * Y
|
|
Z = X * (Yp + Ypp<<b)
|
|
Z = (X * Yp) + (X * Ypp<<b)
|
|
|
|
Note that this function may recurse multiple times, if both X & Y
|
|
are too long for the hardware multiplication unit.
|
|
*/
|
|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t bits_y, size_t words_result)
|
|
{
|
|
int ret = 0;
|
|
mbedtls_mpi Ztemp;
|
|
const size_t limbs_y = (bits_y + biL - 1) / biL;
|
|
/* Rather than slicing in two on bits we slice on limbs (32 bit words) */
|
|
const size_t limbs_slice = limbs_y / 2;
|
|
/* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
|
|
const mbedtls_mpi Yp = {
|
|
.p = Y->p,
|
|
.n = limbs_slice,
|
|
.s = Y->s
|
|
};
|
|
/* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
|
|
const mbedtls_mpi Ypp = {
|
|
.p = Y->p + limbs_slice,
|
|
.n = limbs_y - limbs_slice,
|
|
.s = Y->s
|
|
};
|
|
mbedtls_mpi_init(&Ztemp);
|
|
|
|
/* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
|
|
|
|
/* Z = Ypp * Y */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
|
|
|
|
/* Z = Z << b */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, limbs_slice * biL) );
|
|
|
|
/* Z += Ztemp */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free(&Ztemp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
|
|
|