mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
adc590ff69
As each 32 byte write has two identical 16 byte AES blocks, it's possible to write them separately.
282 lines
9.0 KiB
C
282 lines
9.0 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef ESP_SPI_FLASH_H
|
|
#define ESP_SPI_FLASH_H
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include "esp_err.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define ESP_ERR_FLASH_BASE 0x10010
|
|
#define ESP_ERR_FLASH_OP_FAIL (ESP_ERR_FLASH_BASE + 1)
|
|
#define ESP_ERR_FLASH_OP_TIMEOUT (ESP_ERR_FLASH_BASE + 2)
|
|
|
|
#define SPI_FLASH_SEC_SIZE 4096 /**< SPI Flash sector size */
|
|
|
|
/**
|
|
* @brief Initialize SPI flash access driver
|
|
*
|
|
* This function must be called exactly once, before any other
|
|
* spi_flash_* functions are called.
|
|
* Currently this function is called from startup code. There is
|
|
* no need to call it from application code.
|
|
*
|
|
*/
|
|
void spi_flash_init();
|
|
|
|
/**
|
|
* @brief Get flash chip size, as set in binary image header
|
|
*
|
|
* @note This value does not necessarily match real flash size.
|
|
*
|
|
* @return size of flash chip, in bytes
|
|
*/
|
|
size_t spi_flash_get_chip_size();
|
|
|
|
/**
|
|
* @brief Erase the Flash sector.
|
|
*
|
|
* @param sector Sector number, the count starts at sector 0, 4KB per sector.
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_erase_sector(size_t sector);
|
|
|
|
/**
|
|
* @brief Erase a range of flash sectors
|
|
*
|
|
* @param start_address Address where erase operation has to start.
|
|
* Must be 4kB-aligned
|
|
* @param size Size of erased range, in bytes. Must be divisible by 4kB.
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_erase_range(size_t start_address, size_t size);
|
|
|
|
|
|
/**
|
|
* @brief Write data to Flash.
|
|
*
|
|
* @note If source address is in DROM, this function will return
|
|
* ESP_ERR_INVALID_ARG.
|
|
*
|
|
* @param dest_addr destination address in Flash. Must be a multiple of 4 bytes.
|
|
* @param src pointer to the source buffer.
|
|
* @param size length of data, in bytes. Must be a multiple of 4 bytes.
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_write(size_t dest_addr, const void *src, size_t size);
|
|
|
|
|
|
/**
|
|
* @brief Write data encrypted to Flash.
|
|
*
|
|
* @note Flash encryption must be enabled for this function to work.
|
|
*
|
|
* @note Destination flash address and length must be 16-byte
|
|
* aligned. Due to hardware limitations, this function is more
|
|
* efficient if both these arguments are 32-byte aligned. This is
|
|
* because the encryption engine natively deals with 32-byte rows of
|
|
* two AES blocks. Writing half a row (16 bytes) requires reading out
|
|
* the other 16 bytes and re-encrypting them back to the same value.
|
|
*
|
|
* @param dest_addr destination address in Flash. Must be a multiple of 16 bytes.
|
|
* @param src pointer to the source buffer.
|
|
* @param size length of data, in bytes. Must be a multiple of 16 bytes.
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size);
|
|
|
|
/**
|
|
* @brief Read data from Flash.
|
|
*
|
|
* @param src_addr source address of the data in Flash.
|
|
* @param dest pointer to the destination buffer
|
|
* @param size length of data
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_read(size_t src_addr, void *dest, size_t size);
|
|
|
|
|
|
/**
|
|
* @brief Read data from Encrypted Flash.
|
|
*
|
|
* If flash encryption is enabled, this function will transparently decrypt data as it is read.
|
|
* If flash encryption is not enabled, this function behaves the same as spi_flash_read().
|
|
*
|
|
* See @ref esp_flash_encryption_enabled() for a function to check if flash encryption is enabled.
|
|
*
|
|
* @param src source address of the data in Flash.
|
|
* @param dest pointer to the destination buffer
|
|
* @param size length of data
|
|
*
|
|
* @return esp_err_t
|
|
*/
|
|
esp_err_t spi_flash_read_encrypted(size_t src, void *dstv, size_t size);
|
|
|
|
/**
|
|
* @brief Enumeration which specifies memory space requested in an mmap call
|
|
*/
|
|
typedef enum {
|
|
SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
|
|
SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
|
|
} spi_flash_mmap_memory_t;
|
|
|
|
/**
|
|
* @brief Opaque handle for memory region obtained from spi_flash_mmap.
|
|
*/
|
|
typedef uint32_t spi_flash_mmap_handle_t;
|
|
|
|
/**
|
|
* @brief Map region of flash memory into data or instruction address space
|
|
*
|
|
* This function allocates sufficient number of 64k MMU pages and configures
|
|
* them to map request region of flash memory into data address space or into
|
|
* instruction address space. It may reuse MMU pages which already provide
|
|
* required mapping. As with any allocator, there is possibility of fragmentation
|
|
* of address space if mmap/munmap are heavily used. To troubleshoot issues with
|
|
* page allocation, use spi_flash_mmap_dump function.
|
|
*
|
|
* @param src_addr Physical address in flash where requested region starts.
|
|
* This address *must* be aligned to 64kB boundary.
|
|
* @param size Size of region which has to be mapped. This size will be rounded
|
|
* up to a 64k boundary.
|
|
* @param memory Memory space where the region should be mapped
|
|
* @param out_ptr Output, pointer to the mapped memory region
|
|
* @param out_handle Output, handle which should be used for spi_flash_munmap call
|
|
*
|
|
* @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
|
|
*/
|
|
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
|
|
|
|
/**
|
|
* @brief Release region previously obtained using spi_flash_mmap
|
|
*
|
|
* @note Calling this function will not necessarily unmap memory region.
|
|
* Region will only be unmapped when there are no other handles which
|
|
* reference this region. In case of partially overlapping regions
|
|
* it is possible that memory will be unmapped partially.
|
|
*
|
|
* @param handle Handle obtained from spi_flash_mmap
|
|
*/
|
|
void spi_flash_munmap(spi_flash_mmap_handle_t handle);
|
|
|
|
/**
|
|
* @brief Display information about mapped regions
|
|
*
|
|
* This function lists handles obtained using spi_flash_mmap, along with range
|
|
* of pages allocated to each handle. It also lists all non-zero entries of
|
|
* MMU table and corresponding reference counts.
|
|
*/
|
|
void spi_flash_mmap_dump();
|
|
|
|
/**
|
|
* @brief SPI flash critical section enter function.
|
|
*/
|
|
typedef void (*spi_flash_guard_start_func_t)(void);
|
|
/**
|
|
* @brief SPI flash critical section exit function.
|
|
*/
|
|
typedef void (*spi_flash_guard_end_func_t)(void);
|
|
|
|
/**
|
|
* Structure holding SPI flash access critical section management functions
|
|
*
|
|
* @note Structure and corresponding guard functions should not reside in flash.
|
|
* For example structure can be placed in DRAM and functions in IRAM sections.
|
|
*/
|
|
typedef struct {
|
|
spi_flash_guard_start_func_t start; /**< critical section start func */
|
|
spi_flash_guard_end_func_t end; /**< critical section end func */
|
|
} spi_flash_guard_funcs_t;
|
|
|
|
/**
|
|
* @brief Sets guard functions to access flash.
|
|
*
|
|
* @note Pointed structure and corresponding guard functions should not reside in flash.
|
|
* For example structure can be placed in DRAM and functions in IRAM sections.
|
|
*
|
|
* @param funcs pointer to structure holding flash access guard functions.
|
|
*/
|
|
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
|
|
|
|
/**
|
|
* @brief Default OS-aware flash access guard functions
|
|
*/
|
|
extern const spi_flash_guard_funcs_t g_flash_guard_default_ops;
|
|
|
|
/**
|
|
* @brief Non-OS flash access guard functions
|
|
*
|
|
* @note This version of flash guard functions is to be used when no OS is present or from panic handler.
|
|
* It does not use any OS primitives and IPC and implies that only calling CPU is active.
|
|
*/
|
|
extern const spi_flash_guard_funcs_t g_flash_guard_no_os_ops;
|
|
|
|
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
|
|
|
|
/**
|
|
* Structure holding statistics for one type of operation
|
|
*/
|
|
typedef struct {
|
|
uint32_t count; // number of times operation was executed
|
|
uint32_t time; // total time taken, in microseconds
|
|
uint32_t bytes; // total number of bytes
|
|
} spi_flash_counter_t;
|
|
|
|
typedef struct {
|
|
spi_flash_counter_t read;
|
|
spi_flash_counter_t write;
|
|
spi_flash_counter_t erase;
|
|
} spi_flash_counters_t;
|
|
|
|
/**
|
|
* @brief Reset SPI flash operation counters
|
|
*/
|
|
void spi_flash_reset_counters();
|
|
|
|
/**
|
|
* @brief Print SPI flash operation counters
|
|
*/
|
|
void spi_flash_dump_counters();
|
|
|
|
/**
|
|
* @brief Return current SPI flash operation counters
|
|
*
|
|
* @return pointer to the spi_flash_counters_t structure holding values
|
|
* of the operation counters
|
|
*/
|
|
const spi_flash_counters_t* spi_flash_get_counters();
|
|
|
|
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
|
|
#endif /* ESP_SPI_FLASH_H */
|
|
|