esp-idf/tools/unit-test-app/components/test_utils/test_utils.c
Angus Gratton 425486223e spi_flash: Remove 16KB free internal heap limit for esp_flash_read() into PSRAM
Allocation of the temporary internal buffer will now repeat until a small enough buffer can be
allocated, and only fail if less than a 256 byte block of internal RAM is free.

Adds unit test for the same, and generic test utility for creating memory pressure.
2020-03-05 17:10:22 +11:00

182 lines
6.2 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "unity.h"
#include "test_utils.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_netif.h"
#include "lwip/sockets.h"
const esp_partition_t *get_test_data_partition(void)
{
/* This finds "flash_test" partition defined in partition_table_unit_test_app.csv */
const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_DATA,
ESP_PARTITION_SUBTYPE_ANY, "flash_test");
TEST_ASSERT_NOT_NULL(result); /* means partition table set wrong */
return result;
}
void test_case_uses_tcpip(void)
{
// Can be called more than once, does nothing on subsequent calls
esp_netif_init();
// Allocate all sockets then free them
// (First time each socket is allocated some one-time allocations happen.)
int sockets[CONFIG_LWIP_MAX_SOCKETS];
for (int i = 0; i < CONFIG_LWIP_MAX_SOCKETS; i++) {
int type = (i % 2 == 0) ? SOCK_DGRAM : SOCK_STREAM;
int family = (i % 3 == 0) ? PF_INET6 : PF_INET;
sockets[i] = socket(family, type, IPPROTO_IP);
}
for (int i = 0; i < CONFIG_LWIP_MAX_SOCKETS; i++) {
close(sockets[i]);
}
// Allow LWIP tasks to finish initialising themselves
vTaskDelay(25 / portTICK_RATE_MS);
printf("Note: esp_netif_init() has been called. Until next reset, TCP/IP task will periodicially allocate memory and consume CPU time.\n");
// Reset the leak checker as LWIP allocates a lot of memory on first run
unity_reset_leak_checks();
test_utils_set_leak_level(0, TYPE_LEAK_CRITICAL, COMP_LEAK_GENERAL);
test_utils_set_leak_level(CONFIG_UNITY_CRITICAL_LEAK_LEVEL_LWIP, TYPE_LEAK_CRITICAL, COMP_LEAK_LWIP);
}
// wait user to send "Enter" key or input parameter
static void wait_user_control(char* parameter_buf, uint8_t buf_len)
{
char *buffer = parameter_buf;
char sign[5];
uint8_t buffer_len = buf_len - 1;
if (parameter_buf == NULL) {
buffer = sign;
buffer_len = sizeof(sign) - 1;
}
// workaround that unity_gets (UartRxString) will not set '\0' correctly
bzero(buffer, buffer_len);
unity_gets(buffer, buffer_len);
}
// signal functions, used for sync between unity DUTs for multiple devices cases
void unity_wait_for_signal_param(const char* signal_name, char* parameter_buf, uint8_t buf_len)
{
printf("Waiting for signal: [%s]!\n", signal_name);
if (parameter_buf == NULL) {
printf("Please press \"Enter\" key once any board send this signal.\n");
} else {
printf("Please input parameter value from any board send this signal and press \"Enter\" key.\n");
}
wait_user_control(parameter_buf, buf_len);
}
void unity_send_signal_param(const char* signal_name, const char *parameter)
{
if (parameter == NULL) {
printf("Send signal: [%s]!\n", signal_name);
} else {
printf("Send signal: [%s][%s]!\n", signal_name, parameter);
}
}
bool unity_util_convert_mac_from_string(const char* mac_str, uint8_t *mac_addr)
{
uint8_t loop = 0;
uint8_t tmp = 0;
const char *start;
char *stop;
for (loop = 0; loop < 6; loop++) {
start = mac_str + loop * 3;
tmp = strtol(start, &stop, 16);
if (stop - start == 2 && (*stop == ':' || (*stop == 0 && loop == 5))) {
mac_addr[loop] = tmp;
} else {
return false;
}
}
return true;
}
static size_t test_unity_leak_level[TYPE_LEAK_MAX][COMP_LEAK_ALL] = { 0 };
esp_err_t test_utils_set_leak_level(size_t leak_level, esp_type_leak_t type_of_leak, esp_comp_leak_t component)
{
if (type_of_leak >= TYPE_LEAK_MAX || component >= COMP_LEAK_ALL) {
return ESP_ERR_INVALID_ARG;
}
test_unity_leak_level[type_of_leak][component] = leak_level;
return ESP_OK;
}
size_t test_utils_get_leak_level(esp_type_leak_t type_of_leak, esp_comp_leak_t component)
{
size_t leak_level = 0;
if (type_of_leak >= TYPE_LEAK_MAX || component > COMP_LEAK_ALL) {
leak_level = 0;
} else {
if (component == COMP_LEAK_ALL) {
for (int comp = 0; comp < COMP_LEAK_ALL; ++comp) {
leak_level += test_unity_leak_level[type_of_leak][comp];
}
} else {
leak_level = test_unity_leak_level[type_of_leak][component];
}
}
return leak_level;
}
#define EXHAUST_MEMORY_ENTRIES 100
struct test_utils_exhaust_memory_record_s {
int *entries[EXHAUST_MEMORY_ENTRIES];
};
test_utils_exhaust_memory_rec test_utils_exhaust_memory(uint32_t caps, size_t limit)
{
int idx = 0;
test_utils_exhaust_memory_rec rec = calloc(1, sizeof(struct test_utils_exhaust_memory_record_s));
TEST_ASSERT_NOT_NULL_MESSAGE(rec, "test_utils_exhaust_memory: not enough free memory to allocate record structure!");
while (idx < EXHAUST_MEMORY_ENTRIES) {
size_t free_caps = heap_caps_get_largest_free_block(caps);
if (free_caps <= limit) {
return rec; // done!
}
rec->entries[idx] = heap_caps_malloc(free_caps - limit, caps);
TEST_ASSERT_NOT_NULL_MESSAGE(rec->entries[idx],
"test_utils_exhaust_memory: something went wrong while freeing up memory, is another task using heap?");
heap_caps_check_integrity_all(true);
idx++;
}
TEST_FAIL_MESSAGE("test_utils_exhaust_memory: The heap with the requested caps is too fragmented, increase EXHAUST_MEMORY_ENTRIES or defrag the heap!");
abort();
}
void test_utils_free_exhausted_memory(test_utils_exhaust_memory_rec rec)
{
for (int i = 0; i < EXHAUST_MEMORY_ENTRIES; i++) {
free(rec->entries[i]);
}
free(rec);
}