esp-idf/components/esp_hw_support/dma/async_memcpy_gdma.c

537 lines
24 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <stdatomic.h>
#include <sys/queue.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "soc/soc_caps.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_private/gdma.h"
#include "esp_memory_utils.h"
#include "esp_async_memcpy.h"
#include "esp_async_memcpy_priv.h"
#include "esp_cache.h"
#include "hal/dma_types.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
static const char *TAG = "async_mcp.gdma";
#ifdef CACHE_LL_L2MEM_NON_CACHE_ADDR
#define MCP_GET_NON_CACHE_ADDR(addr) ((addr) ? CACHE_LL_L2MEM_NON_CACHE_ADDR(addr) : 0)
#else
#define MCP_GET_NON_CACHE_ADDR(addr) (addr)
#endif
#if SOC_AXI_GDMA_SUPPORTED
#define MCP_DMA_DESC_ALIGN 8
typedef dma_descriptor_align8_t mcp_dma_descriptor_t;
#elif SOC_AHB_GDMA_SUPPORTED
#define MCP_DMA_DESC_ALIGN 4
typedef dma_descriptor_align4_t mcp_dma_descriptor_t;
#else
#error "Unsupported GDMA type"
#endif
/// @brief Transaction object for async memcpy
/// @note - GDMA requires the DMA descriptors to be 4 or 8 bytes aligned
/// @note - The DMA descriptor link list is allocated dynamically from DMA-able memory
/// @note - Because of the eof_node, the transaction object should also be allocated from DMA-able memory
typedef struct async_memcpy_transaction_t {
mcp_dma_descriptor_t eof_node; // this is the DMA node which act as the EOF descriptor (RX path only)
mcp_dma_descriptor_t *tx_desc_link; // descriptor link list, the length of the link is determined by the copy buffer size
mcp_dma_descriptor_t *tx_desc_nc; // non-cacheable version of tx_desc_link
mcp_dma_descriptor_t *rx_desc_link; // descriptor link list, the length of the link is determined by the copy buffer size
mcp_dma_descriptor_t *rx_desc_nc; // non-cacheable version of rx_desc_link
intptr_t tx_start_desc_addr; // TX start descriptor address
intptr_t rx_start_desc_addr; // RX start descriptor address
void *memcpy_dst_addr; // memcpy destination address
size_t memcpy_size; // memcpy size
async_memcpy_isr_cb_t cb; // user callback
void *cb_args; // user callback args
STAILQ_ENTRY(async_memcpy_transaction_t) idle_queue_entry; // Entry for the idle queue
STAILQ_ENTRY(async_memcpy_transaction_t) ready_queue_entry; // Entry for the ready queue
} async_memcpy_transaction_t;
/// @brief Context of async memcpy driver
/// @note - It saves two queues, one for idle transaction objects, one for ready transaction objects
/// @note - Transaction objects are allocated from DMA-able memory
/// @note - Number of transaction objects are determined by the backlog parameter
typedef struct {
async_memcpy_context_t parent; // Parent IO interface
size_t descriptor_align; // DMA descriptor alignment
size_t sram_trans_align; // DMA buffer alignment (both in size and address) for SRAM memory
size_t psram_trans_align; // DMA buffer alignment (both in size and address) for PSRAM memory
size_t max_single_dma_buffer; // max DMA buffer size by a single descriptor
int gdma_bus_id; // GDMA bus id (AHB, AXI, etc.)
gdma_channel_handle_t tx_channel; // GDMA TX channel handle
gdma_channel_handle_t rx_channel; // GDMA RX channel handle
portMUX_TYPE spin_lock; // spin lock to avoid threads and isr from accessing the same resource simultaneously
_Atomic async_memcpy_fsm_t fsm; // driver state machine, changing state should be atomic
async_memcpy_transaction_t *transaction_pool; // transaction object pool
STAILQ_HEAD(, async_memcpy_transaction_t) idle_queue_head; // Head of the idle queue
STAILQ_HEAD(, async_memcpy_transaction_t) ready_queue_head; // Head of the ready queue
} async_memcpy_gdma_context_t;
static bool mcp_gdma_rx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
static esp_err_t mcp_gdma_del(async_memcpy_context_t *ctx);
static esp_err_t mcp_gdma_memcpy(async_memcpy_context_t *ctx, void *dst, void *src, size_t n, async_memcpy_isr_cb_t cb_isr, void *cb_args);
#if SOC_GDMA_SUPPORT_ETM
static esp_err_t mcp_new_etm_event(async_memcpy_context_t *ctx, async_memcpy_etm_event_t event_type, esp_etm_event_handle_t *out_event);
#endif // SOC_GDMA_SUPPORT_ETM
static esp_err_t mcp_gdma_destroy(async_memcpy_gdma_context_t *mcp_gdma)
{
if (mcp_gdma->transaction_pool) {
free(mcp_gdma->transaction_pool);
}
if (mcp_gdma->tx_channel) {
gdma_disconnect(mcp_gdma->tx_channel);
gdma_del_channel(mcp_gdma->tx_channel);
}
if (mcp_gdma->rx_channel) {
gdma_disconnect(mcp_gdma->rx_channel);
gdma_del_channel(mcp_gdma->rx_channel);
}
free(mcp_gdma);
return ESP_OK;
}
static esp_err_t esp_async_memcpy_install_gdma_template(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp,
esp_err_t (*new_channel)(const gdma_channel_alloc_config_t *, gdma_channel_handle_t *),
int gdma_bus_id)
{
esp_err_t ret = ESP_OK;
async_memcpy_gdma_context_t *mcp_gdma = NULL;
ESP_RETURN_ON_FALSE(config && mcp, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// allocate memory of driver context from internal memory
mcp_gdma = heap_caps_calloc(1, sizeof(async_memcpy_gdma_context_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_GOTO_ON_FALSE(mcp_gdma, ESP_ERR_NO_MEM, err, TAG, "no mem for driver context");
uint32_t trans_queue_len = config->backlog ? config->backlog : DEFAULT_TRANSACTION_QUEUE_LENGTH;
// allocate memory for transaction pool
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
uint32_t alignment = MAX(data_cache_line_size, MCP_DMA_DESC_ALIGN);
mcp_gdma->transaction_pool = heap_caps_aligned_calloc(alignment, trans_queue_len, sizeof(async_memcpy_transaction_t),
MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(mcp_gdma->transaction_pool, ESP_ERR_NO_MEM, err, TAG, "no mem for transaction pool");
mcp_gdma->descriptor_align = alignment;
// create TX channel and RX channel, they should reside in the same DMA pair
gdma_channel_alloc_config_t tx_alloc_config = {
.flags.reserve_sibling = 1,
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ESP_GOTO_ON_ERROR(new_channel(&tx_alloc_config, &mcp_gdma->tx_channel), err, TAG, "failed to create GDMA TX channel");
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
.sibling_chan = mcp_gdma->tx_channel,
};
ESP_GOTO_ON_ERROR(new_channel(&rx_alloc_config, &mcp_gdma->rx_channel), err, TAG, "failed to create GDMA RX channel");
// initialize GDMA channels
gdma_trigger_t m2m_trigger = GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_M2M, 0);
// get a free DMA trigger ID for memory copy
uint32_t free_m2m_id_mask = 0;
gdma_get_free_m2m_trig_id_mask(mcp_gdma->tx_channel, &free_m2m_id_mask);
m2m_trigger.instance_id = __builtin_ctz(free_m2m_id_mask);
ESP_GOTO_ON_ERROR(gdma_connect(mcp_gdma->rx_channel, m2m_trigger), err, TAG, "GDMA rx connect failed");
ESP_GOTO_ON_ERROR(gdma_connect(mcp_gdma->tx_channel, m2m_trigger), err, TAG, "GDMA tx connect failed");
gdma_transfer_ability_t transfer_ability = {
.sram_trans_align = config->sram_trans_align,
.psram_trans_align = config->psram_trans_align,
};
ESP_GOTO_ON_ERROR(gdma_set_transfer_ability(mcp_gdma->tx_channel, &transfer_ability), err, TAG, "set tx trans ability failed");
ESP_GOTO_ON_ERROR(gdma_set_transfer_ability(mcp_gdma->rx_channel, &transfer_ability), err, TAG, "set rx trans ability failed");
// register rx eof callback
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = mcp_gdma_rx_eof_callback,
};
ESP_GOTO_ON_ERROR(gdma_register_rx_event_callbacks(mcp_gdma->rx_channel, &cbs, mcp_gdma), err, TAG, "failed to register RX EOF callback");
// initialize transaction queue
STAILQ_INIT(&mcp_gdma->idle_queue_head);
STAILQ_INIT(&mcp_gdma->ready_queue_head);
// pick transactions from the pool and insert to the idle queue
for (int i = 0; i < trans_queue_len; i++) {
STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, &mcp_gdma->transaction_pool[i], idle_queue_entry);
}
// initialize other members
portMUX_INITIALIZE(&mcp_gdma->spin_lock);
atomic_init(&mcp_gdma->fsm, MCP_FSM_IDLE);
mcp_gdma->gdma_bus_id = gdma_bus_id;
uint32_t psram_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA);
uint32_t sram_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
// if the psram_trans_align is configured to zero, we should fall back to use the data cache line size
size_t psram_trans_align = MAX(psram_cache_line_size, config->psram_trans_align);
size_t sram_trans_align = MAX(sram_cache_line_size, config->sram_trans_align);
size_t trans_align = MAX(sram_trans_align, psram_trans_align);
mcp_gdma->max_single_dma_buffer = ALIGN_DOWN(DMA_DESCRIPTOR_BUFFER_MAX_SIZE, trans_align);
mcp_gdma->psram_trans_align = psram_trans_align;
mcp_gdma->sram_trans_align = sram_trans_align;
mcp_gdma->parent.del = mcp_gdma_del;
mcp_gdma->parent.memcpy = mcp_gdma_memcpy;
#if SOC_GDMA_SUPPORT_ETM
mcp_gdma->parent.new_etm_event = mcp_new_etm_event;
#endif
// return driver object
*mcp = &mcp_gdma->parent;
return ESP_OK;
err:
if (mcp_gdma) {
mcp_gdma_destroy(mcp_gdma);
}
return ret;
}
#if SOC_AHB_GDMA_SUPPORTED
esp_err_t esp_async_memcpy_install_gdma_ahb(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp)
{
return esp_async_memcpy_install_gdma_template(config, mcp, gdma_new_ahb_channel, SOC_GDMA_BUS_AHB);
}
#endif // SOC_AHB_GDMA_SUPPORTED
#if SOC_AXI_GDMA_SUPPORTED
esp_err_t esp_async_memcpy_install_gdma_axi(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp)
{
return esp_async_memcpy_install_gdma_template(config, mcp, gdma_new_axi_channel, SOC_GDMA_BUS_AXI);
}
#endif // SOC_AXI_GDMA_SUPPORTED
#if SOC_AHB_GDMA_SUPPORTED
/// default installation falls back to use the AHB GDMA
esp_err_t esp_async_memcpy_install(const async_memcpy_config_t *config, async_memcpy_handle_t *asmcp)
__attribute__((alias("esp_async_memcpy_install_gdma_ahb")));
#elif SOC_AXI_GDMA_SUPPORTED
/// default installation falls back to use the AXI GDMA
esp_err_t esp_async_memcpy_install(const async_memcpy_config_t *config, async_memcpy_handle_t *asmcp)
__attribute__((alias("esp_async_memcpy_install_gdma_axi")));
#endif
static esp_err_t mcp_gdma_del(async_memcpy_context_t *ctx)
{
async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
// check if there are pending transactions
ESP_RETURN_ON_FALSE(STAILQ_EMPTY(&mcp_gdma->ready_queue_head), ESP_ERR_INVALID_STATE, TAG, "there are pending transactions");
// check if the driver is in IDLE state
ESP_RETURN_ON_FALSE(atomic_load(&mcp_gdma->fsm) == MCP_FSM_IDLE, ESP_ERR_INVALID_STATE, TAG, "driver is not in IDLE state");
return mcp_gdma_destroy(mcp_gdma);
}
static void mount_tx_buffer_to_dma(async_memcpy_transaction_t *trans, int num_desc,
uint8_t *buf, size_t buf_sz, size_t max_single_dma_buffer)
{
mcp_dma_descriptor_t *desc_array = trans->tx_desc_link;
mcp_dma_descriptor_t *desc_nc = trans->tx_desc_nc;
uint32_t prepared_length = 0;
size_t len = buf_sz;
for (int i = 0; i < num_desc - 1; i++) {
desc_nc[i].buffer = &buf[prepared_length];
desc_nc[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc_nc[i].dw0.suc_eof = 0;
desc_nc[i].dw0.size = max_single_dma_buffer;
desc_nc[i].dw0.length = max_single_dma_buffer;
desc_nc[i].next = &desc_array[i + 1];
prepared_length += max_single_dma_buffer;
len -= max_single_dma_buffer;
}
// take special care to the EOF descriptor
desc_nc[num_desc - 1].buffer = &buf[prepared_length];
desc_nc[num_desc - 1].next = NULL;
desc_nc[num_desc - 1].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc_nc[num_desc - 1].dw0.suc_eof = 1;
desc_nc[num_desc - 1].dw0.size = len;
desc_nc[num_desc - 1].dw0.length = len;
}
static void mount_rx_buffer_to_dma(async_memcpy_transaction_t *trans, int num_desc,
uint8_t *buf, size_t buf_sz, size_t max_single_dma_buffer)
{
mcp_dma_descriptor_t *desc_array = trans->rx_desc_link;
mcp_dma_descriptor_t *desc_nc = trans->rx_desc_nc;
mcp_dma_descriptor_t *eof_desc = &trans->eof_node;
mcp_dma_descriptor_t *eof_nc = (mcp_dma_descriptor_t *)MCP_GET_NON_CACHE_ADDR(eof_desc);
uint32_t prepared_length = 0;
size_t len = buf_sz;
if (desc_array) {
assert(num_desc > 0);
for (int i = 0; i < num_desc; i++) {
desc_nc[i].buffer = &buf[prepared_length];
desc_nc[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc_nc[i].dw0.size = max_single_dma_buffer;
desc_nc[i].dw0.length = max_single_dma_buffer;
desc_nc[i].next = &desc_array[i + 1];
prepared_length += max_single_dma_buffer;
len -= max_single_dma_buffer;
}
desc_nc[num_desc - 1].next = eof_desc;
}
eof_nc->buffer = &buf[prepared_length];
eof_nc->next = NULL;
eof_nc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
eof_nc->dw0.size = len;
eof_nc->dw0.length = len;
}
/// @brief help function to get one transaction from the ready queue
/// @note this function is allowed to be called in ISR
static async_memcpy_transaction_t *try_pop_trans_from_ready_queue(async_memcpy_gdma_context_t *mcp_gdma)
{
async_memcpy_transaction_t *trans = NULL;
portENTER_CRITICAL_SAFE(&mcp_gdma->spin_lock);
trans = STAILQ_FIRST(&mcp_gdma->ready_queue_head);
if (trans) {
STAILQ_REMOVE_HEAD(&mcp_gdma->ready_queue_head, ready_queue_entry);
}
portEXIT_CRITICAL_SAFE(&mcp_gdma->spin_lock);
return trans;
}
/// @brief help function to start a pending transaction
/// @note this function is allowed to be called in ISR
static void try_start_pending_transaction(async_memcpy_gdma_context_t *mcp_gdma)
{
async_memcpy_fsm_t expected_fsm = MCP_FSM_IDLE;
async_memcpy_transaction_t *trans = NULL;
if (atomic_compare_exchange_strong(&mcp_gdma->fsm, &expected_fsm, MCP_FSM_RUN_WAIT)) {
trans = try_pop_trans_from_ready_queue(mcp_gdma);
if (trans) {
atomic_store(&mcp_gdma->fsm, MCP_FSM_RUN);
gdma_start(mcp_gdma->rx_channel, trans->rx_start_desc_addr);
gdma_start(mcp_gdma->tx_channel, trans->tx_start_desc_addr);
} else {
atomic_store(&mcp_gdma->fsm, MCP_FSM_IDLE);
}
}
}
/// @brief help function to get one transaction from the idle queue
/// @note this function is allowed to be called in ISR
static async_memcpy_transaction_t *try_pop_trans_from_idle_queue(async_memcpy_gdma_context_t *mcp_gdma)
{
async_memcpy_transaction_t *trans = NULL;
portENTER_CRITICAL_SAFE(&mcp_gdma->spin_lock);
trans = STAILQ_FIRST(&mcp_gdma->idle_queue_head);
if (trans) {
STAILQ_REMOVE_HEAD(&mcp_gdma->idle_queue_head, idle_queue_entry);
}
portEXIT_CRITICAL_SAFE(&mcp_gdma->spin_lock);
return trans;
}
static bool check_buffer_alignment(async_memcpy_gdma_context_t *mcp_gdma, void *src, void *dst, size_t n)
{
bool valid = true;
uint32_t psram_align_mask = 0;
uint32_t sram_align_mask = 0;
if (mcp_gdma->psram_trans_align) {
psram_align_mask = mcp_gdma->psram_trans_align - 1;
}
if (mcp_gdma->sram_trans_align) {
sram_align_mask = mcp_gdma->sram_trans_align - 1;
}
if (esp_ptr_external_ram(dst)) {
valid = valid && (((uint32_t)dst & psram_align_mask) == 0);
valid = valid && ((n & psram_align_mask) == 0);
} else {
valid = valid && (((uint32_t)dst & sram_align_mask) == 0);
valid = valid && ((n & sram_align_mask) == 0);
}
if (esp_ptr_external_ram(src)) {
valid = valid && (((uint32_t)src & psram_align_mask) == 0);
valid = valid && ((n & psram_align_mask) == 0);
} else {
valid = valid && (((uint32_t)src & sram_align_mask) == 0);
valid = valid && ((n & sram_align_mask) == 0);
}
return valid;
}
static esp_err_t mcp_gdma_memcpy(async_memcpy_context_t *ctx, void *dst, void *src, size_t n, async_memcpy_isr_cb_t cb_isr, void *cb_args)
{
esp_err_t ret = ESP_OK;
async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
// buffer location check
#if SOC_AHB_GDMA_SUPPORTED && !SOC_AHB_GDMA_SUPPORT_PSRAM
if (mcp_gdma->gdma_bus_id == SOC_GDMA_BUS_AHB) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(src) && esp_ptr_internal(dst), ESP_ERR_INVALID_ARG, TAG, "AHB GDMA can only access SRAM");
}
#endif // SOC_AHB_GDMA_SUPPORTED && !SOC_AHB_GDMA_SUPPORT_PSRAM
#if SOC_AXI_GDMA_SUPPORTED && !SOC_AXI_GDMA_SUPPORT_PSRAM
if (mcp_gdma->gdma_bus_id == SOC_GDMA_BUS_AXI) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(src) && esp_ptr_internal(dst), ESP_ERR_INVALID_ARG, TAG, "AXI DMA can only access SRAM");
}
#endif // SOC_AXI_GDMA_SUPPORTED && !SOC_AXI_GDMA_SUPPORT_PSRAM
// alignment check
ESP_RETURN_ON_FALSE(check_buffer_alignment(mcp_gdma, src, dst, n), ESP_ERR_INVALID_ARG, TAG, "buffer not aligned: %p -> %p, sz=%zu", src, dst, n);
async_memcpy_transaction_t *trans = NULL;
// pick one transaction node from idle queue
trans = try_pop_trans_from_idle_queue(mcp_gdma);
// check if we get the transaction object successfully
ESP_RETURN_ON_FALSE(trans, ESP_ERR_INVALID_STATE, TAG, "no free node in the idle queue");
// calculate how many descriptors we want
size_t max_single_dma_buffer = mcp_gdma->max_single_dma_buffer;
uint32_t num_desc_per_path = (n + max_single_dma_buffer - 1) / max_single_dma_buffer;
// allocate DMA descriptors, descriptors need a strict alignment
trans->tx_desc_link = heap_caps_aligned_calloc(mcp_gdma->descriptor_align, num_desc_per_path, sizeof(mcp_dma_descriptor_t),
MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(trans->tx_desc_link, ESP_ERR_NO_MEM, err, TAG, "no mem for DMA descriptors");
trans->tx_desc_nc = (mcp_dma_descriptor_t *)MCP_GET_NON_CACHE_ADDR(trans->tx_desc_link);
// don't have to allocate the EOF descriptor, we will use trans->eof_node as the RX EOF descriptor
if (num_desc_per_path > 1) {
trans->rx_desc_link = heap_caps_aligned_calloc(mcp_gdma->descriptor_align, num_desc_per_path - 1, sizeof(mcp_dma_descriptor_t),
MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(trans->rx_desc_link, ESP_ERR_NO_MEM, err, TAG, "no mem for DMA descriptors");
trans->rx_desc_nc = (mcp_dma_descriptor_t *)MCP_GET_NON_CACHE_ADDR(trans->rx_desc_link);
} else {
// small copy buffer, use the trans->eof_node is sufficient
trans->rx_desc_link = NULL;
trans->rx_desc_nc = NULL;
}
// (preload) mount src data to the TX descriptor
mount_tx_buffer_to_dma(trans, num_desc_per_path, src, n, max_single_dma_buffer);
// (preload) mount dst data to the RX descriptor
mount_rx_buffer_to_dma(trans, num_desc_per_path - 1, dst, n, max_single_dma_buffer);
// if the data is in the cache, write back, then DMA can see the latest data
bool need_write_back = false;
if (esp_ptr_external_ram(src)) {
need_write_back = true;
} else if (esp_ptr_internal(src)) {
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
need_write_back = true;
#endif
}
if (need_write_back) {
esp_cache_msync(src, n, ESP_CACHE_MSYNC_FLAG_DIR_C2M);
}
// save other transaction context
trans->cb = cb_isr;
trans->cb_args = cb_args;
trans->memcpy_size = n;
trans->memcpy_dst_addr = dst; // save the destination buffer address, because we may need to do data cache invalidate later
trans->tx_start_desc_addr = (intptr_t)trans->tx_desc_link;
trans->rx_start_desc_addr = trans->rx_desc_link ? (intptr_t)trans->rx_desc_link : (intptr_t)&trans->eof_node;
portENTER_CRITICAL(&mcp_gdma->spin_lock);
// insert the trans to ready queue
STAILQ_INSERT_TAIL(&mcp_gdma->ready_queue_head, trans, ready_queue_entry);
portEXIT_CRITICAL(&mcp_gdma->spin_lock);
// check driver state, if there's no running transaction, start a new one
try_start_pending_transaction(mcp_gdma);
return ESP_OK;
err:
if (trans) {
if (trans->tx_desc_link) {
free(trans->tx_desc_link);
trans->tx_desc_link = NULL;
}
if (trans->rx_desc_link) {
free(trans->rx_desc_link);
trans->rx_desc_link = NULL;
}
// return back the trans to idle queue
portENTER_CRITICAL(&mcp_gdma->spin_lock);
STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, trans, idle_queue_entry);
portEXIT_CRITICAL(&mcp_gdma->spin_lock);
}
return ret;
}
static bool mcp_gdma_rx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
bool need_yield = false;
async_memcpy_gdma_context_t *mcp_gdma = (async_memcpy_gdma_context_t *)user_data;
mcp_dma_descriptor_t *eof_desc = (mcp_dma_descriptor_t *)event_data->rx_eof_desc_addr;
// get the transaction object address by the EOF descriptor address
async_memcpy_transaction_t *trans = __containerof(eof_desc, async_memcpy_transaction_t, eof_node);
// switch driver state from RUN to IDLE
async_memcpy_fsm_t expected_fsm = MCP_FSM_RUN;
if (atomic_compare_exchange_strong(&mcp_gdma->fsm, &expected_fsm, MCP_FSM_IDLE_WAIT)) {
void *dst = trans->memcpy_dst_addr;
// if the data is in the cache, invalidate, then CPU can see the latest data
bool need_invalidate = false;
if (esp_ptr_external_ram(dst)) {
need_invalidate = true;
} else if (esp_ptr_internal(dst)) {
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
need_invalidate = true;
#endif
}
if (need_invalidate) {
esp_cache_msync(dst, trans->memcpy_size, ESP_CACHE_MSYNC_FLAG_DIR_M2C);
}
// invoked callback registered by user
async_memcpy_isr_cb_t cb = trans->cb;
if (cb) {
async_memcpy_event_t e = {
// No event data for now
};
need_yield = cb(&mcp_gdma->parent, &e, trans->cb_args);
}
// recycle descriptor memory
if (trans->tx_desc_link) {
free(trans->tx_desc_link);
trans->tx_desc_link = NULL;
}
if (trans->rx_desc_link) {
free(trans->rx_desc_link);
trans->rx_desc_link = NULL;
}
trans->cb = NULL;
portENTER_CRITICAL_ISR(&mcp_gdma->spin_lock);
// insert the trans object to the idle queue
STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, trans, idle_queue_entry);
portEXIT_CRITICAL_ISR(&mcp_gdma->spin_lock);
atomic_store(&mcp_gdma->fsm, MCP_FSM_IDLE);
}
// try start the next pending transaction
try_start_pending_transaction(mcp_gdma);
return need_yield;
}
#if SOC_GDMA_SUPPORT_ETM
static esp_err_t mcp_new_etm_event(async_memcpy_context_t *ctx, async_memcpy_etm_event_t event_type, esp_etm_event_handle_t *out_event)
{
async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
if (event_type == ASYNC_MEMCPY_ETM_EVENT_COPY_DONE) {
// use the RX EOF to indicate the async memcpy done event
gdma_etm_event_config_t etm_event_conf = {
.event_type = GDMA_ETM_EVENT_EOF,
};
return gdma_new_etm_event(mcp_gdma->rx_channel, &etm_event_conf, out_event);
} else {
return ESP_ERR_NOT_SUPPORTED;
}
}
#endif // SOC_GDMA_SUPPORT_ETM