esp-idf/components/riscv/vectors.S
Omar Chebib a8b1475fe7 feat(riscv): implement coprocessors save area and FPU support
This commit mainly targets the ESP32-P4. It adds supports for coprocessors on
RISC-V based targets. The coprocessor save area, describing the used coprocessors
is stored at the end of the stack of each task (highest address) whereas each
coprocessor save area is allocated at the beginning of the task (lowest address).
The context of each coprocessor is saved lazily, by the task that want to use it.
2023-10-23 11:10:28 +08:00

350 lines
12 KiB
ArmAsm

/*
* SPDX-FileCopyrightText: 2017-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/soc.h"
#include "soc/interrupt_reg.h"
#include "riscv/rvruntime-frames.h"
#include "soc/soc_caps.h"
#include "sdkconfig.h"
#include "esp_private/vectors_const.h"
.equ SAVE_REGS, 32
.equ CONTEXT_SIZE, (SAVE_REGS * 4)
.equ EXC_ILLEGAL_INSTRUCTION, 0x2
.equ panic_from_exception, xt_unhandled_exception
.equ panic_from_isr, panicHandler
#if ( SOC_CPU_COPROC_NUM > 0 )
/* Targets with coprocessors present a special CSR to get Illegal Instruction exception reason */
.equ EXT_ILL_CSR, 0x7F0
#endif /* SOC_CPU_COPROC_NUM > 0 */
/* Macro which first allocates space on the stack to save general
* purpose registers, and then save them. GP register is excluded.
* The default size allocated on the stack is CONTEXT_SIZE, but it
* can be overridden. */
.macro save_general_regs cxt_size=CONTEXT_SIZE
addi sp, sp, -\cxt_size
sw ra, RV_STK_RA(sp)
sw tp, RV_STK_TP(sp)
sw t0, RV_STK_T0(sp)
sw t1, RV_STK_T1(sp)
sw t2, RV_STK_T2(sp)
sw s0, RV_STK_S0(sp)
sw s1, RV_STK_S1(sp)
sw a0, RV_STK_A0(sp)
sw a1, RV_STK_A1(sp)
sw a2, RV_STK_A2(sp)
sw a3, RV_STK_A3(sp)
sw a4, RV_STK_A4(sp)
sw a5, RV_STK_A5(sp)
sw a6, RV_STK_A6(sp)
sw a7, RV_STK_A7(sp)
sw s2, RV_STK_S2(sp)
sw s3, RV_STK_S3(sp)
sw s4, RV_STK_S4(sp)
sw s5, RV_STK_S5(sp)
sw s6, RV_STK_S6(sp)
sw s7, RV_STK_S7(sp)
sw s8, RV_STK_S8(sp)
sw s9, RV_STK_S9(sp)
sw s10, RV_STK_S10(sp)
sw s11, RV_STK_S11(sp)
sw t3, RV_STK_T3(sp)
sw t4, RV_STK_T4(sp)
sw t5, RV_STK_T5(sp)
sw t6, RV_STK_T6(sp)
.endm
.macro save_mepc
csrr t0, mepc
sw t0, RV_STK_MEPC(sp)
.endm
/* Restore the general purpose registers (excluding gp) from the context on
* the stack. The context is then deallocated. The default size is CONTEXT_SIZE
* but it can be overridden. */
.macro restore_general_regs cxt_size=CONTEXT_SIZE
lw ra, RV_STK_RA(sp)
lw tp, RV_STK_TP(sp)
lw t0, RV_STK_T0(sp)
lw t1, RV_STK_T1(sp)
lw t2, RV_STK_T2(sp)
lw s0, RV_STK_S0(sp)
lw s1, RV_STK_S1(sp)
lw a0, RV_STK_A0(sp)
lw a1, RV_STK_A1(sp)
lw a2, RV_STK_A2(sp)
lw a3, RV_STK_A3(sp)
lw a4, RV_STK_A4(sp)
lw a5, RV_STK_A5(sp)
lw a6, RV_STK_A6(sp)
lw a7, RV_STK_A7(sp)
lw s2, RV_STK_S2(sp)
lw s3, RV_STK_S3(sp)
lw s4, RV_STK_S4(sp)
lw s5, RV_STK_S5(sp)
lw s6, RV_STK_S6(sp)
lw s7, RV_STK_S7(sp)
lw s8, RV_STK_S8(sp)
lw s9, RV_STK_S9(sp)
lw s10, RV_STK_S10(sp)
lw s11, RV_STK_S11(sp)
lw t3, RV_STK_T3(sp)
lw t4, RV_STK_T4(sp)
lw t5, RV_STK_T5(sp)
lw t6, RV_STK_T6(sp)
addi sp,sp, \cxt_size
.endm
.macro restore_mepc
lw t0, RV_STK_MEPC(sp)
csrw mepc, t0
.endm
.global rtos_int_enter
.global rtos_int_exit
.global rtos_save_fpu_coproc
.global _global_interrupt_handler
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
.global gdbstub_handle_debug_int
#endif
.section .exception_vectors.text
/* Exception handler.*/
.type _panic_handler, @function
.global _panic_handler
_panic_handler:
/* Allocate space on the stack and store general purpose registers */
save_general_regs RV_STK_FRMSZ
/* As gp register is not saved by the macro, save it here */
sw gp, RV_STK_GP(sp)
/* Same goes for the SP value before trapping */
addi t0, sp, RV_STK_FRMSZ /* restore sp with the value when trap happened */
/* Save CSRs */
sw t0, RV_STK_SP(sp)
csrr t0, mepc
sw t0, RV_STK_MEPC(sp)
csrr t0, mstatus
sw t0, RV_STK_MSTATUS(sp)
csrr t0, mtvec
sw t0, RV_STK_MTVEC(sp)
csrr t0, mhartid
sw t0, RV_STK_MHARTID(sp)
csrr t0, mtval
sw t0, RV_STK_MTVAL(sp)
/* Keep mcause in s0, only the exception code and interrupt bit are relevant */
csrr s0, mcause
li t1, VECTORS_MCAUSE_INTBIT_MASK | VECTORS_MCAUSE_REASON_MASK
and s0, s0, t1
#if ( SOC_CPU_COPROC_NUM > 0 )
/* Check if the exception was cause by a coprocessor instruction. If this is the case, we have
* to lazily save the registers inside the current owner's save area */
/* Check if the exception is Illegal instruction */
li a1, EXC_ILLEGAL_INSTRUCTION
bne s0, a1, _panic_handler_not_coproc
/* In case this is due to a coprocessor, set ra right now to simplify the logic below */
la ra, _return_from_exception
/* EXT_ILL CSR should contain the reason for the Illegal Instruction. */
csrr a0, EXT_ILL_CSR
bnez a0, _panic_handler_coproc
#if SOC_CPU_HAS_FPU_EXT_ILL_BUG && SOC_CPU_HAS_FPU
/* If the SOC present the hardware EXT_ILL CSR bug, it doesn't support FPU load/store detection
* so we have to check the instruction's opcode (in `mtval` = `t0`) */
andi a0, t0, 0b1011111
li a1, 0b0000111
/* If opcode is of the form 0b0x00111, the instruction is FLW or FSW */
beq a0, a1, rtos_save_fpu_coproc
/* Check the compressed instructions: C.FLW, C.FSW, C.FLWSP and C.FSWP.
* All of them have their highest 3 bits to x11 and the lowest bit to 0 */
li a0, 0x6001
and a0, t0, a0 /* a0 = mtval & 0x6001 */
li a1, 0x6000
beq a0, a1, rtos_save_fpu_coproc
/* The instruction was not an FPU one, continue the exception */
#endif /* SOC_CPU_HAS_FPU_EXT_ILL_BUG && SOC_CPU_HAS_FPU */
j _panic_handler_not_coproc
_panic_handler_coproc:
/* EXT_ILL CSR reasons are stored as follows:
* - Bit 0: FPU core instruction (Load/Store instructions NOT concerned)
* - Bit 1: Low-power core
* - Bit 2: PIE core
*/
#if SOC_CPU_HAS_FPU
li a1, 1
beq a0, a1, rtos_save_fpu_coproc
#endif /* SOC_CPU_HAS_FPU */
/* Ignore LP and PIE for now, continue the exception */
_panic_handler_not_coproc:
#endif /* ( SOC_CPU_COPROC_NUM > 0 ) */
/* Call panic_from_exception(sp) or panic_from_isr(sp)
* depending on whether we have a pseudo excause or not.
* If mcause's highest bit is 1, then an interrupt called this routine,
* so we have a pseudo excause. Else, it is due to a exception, we don't
* have an pseudo excause */
mv a0, sp
mv a1, s0
/* Branches instructions don't accept immediate values, so use t1 to
* store our comparator */
li t0, 0x80000000
bgeu a1, t0, _call_panic_handler
sw a1, RV_STK_MCAUSE(sp)
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
li t0, 3
beq a1, t0, _call_gdbstub_handler
#endif
call panic_from_exception
/* We arrive here if the exception handler has returned. */
j _return_from_exception
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
_call_gdbstub_handler:
call gdbstub_handle_debug_int
j _return_from_exception
#endif
_call_panic_handler:
/* Remove highest bit from mcause (a1) register and save it in the structure */
not t0, t0
and a1, a1, t0
#if CONFIG_SOC_INT_CLIC_SUPPORTED
/* When CLIC is supported, external interrupts are shifted by 16, deduct this difference from mcause */
add a1, a1, -16
#endif // CONFIG_SOC_INT_CLIC_SUPPORTED
sw a1, RV_STK_MCAUSE(sp)
call panic_from_isr
/* We arrive here if the exception handler has returned. This means that
* the exception was handled, and the execution flow should resume.
* Restore the registers and return from the exception.
*/
_return_from_exception:
restore_mepc
/* MTVEC and SP are assumed to be unmodified.
* MSTATUS, MHARTID, MTVAL are read-only and not restored.
*/
lw gp, RV_STK_GP(sp)
restore_general_regs RV_STK_FRMSZ
mret
.size _panic_handler, .-_panic_handler
/* This is the interrupt handler.
* It saves the registers on the stack, prepares for interrupt nesting, re-enables the interrupts,
* then jumps to the C dispatcher in interrupt.c. Upon return, the register context will be restored
* from the stack.
*/
.global _interrupt_handler
.type _interrupt_handler, @function
_interrupt_handler:
/* Start by saving the general purpose registers and the PC value before
* the interrupt happened. */
save_general_regs
save_mepc
/* Though it is not necessary we save GP and SP here.
* SP is necessary to help GDB to properly unwind
* the backtrace of threads preempted by interrupts (OS tick etc.).
* GP is saved just to have its proper value in GDB. */
/* As gp register is not saved by the macro, save it here */
sw gp, RV_STK_GP(sp)
/* Same goes for the SP value before trapping */
addi a0, sp, CONTEXT_SIZE /* restore sp with the value when interrupt happened */
/* Save SP former value */
sw a0, RV_STK_SP(sp)
/* Notify the RTOS that an interrupt ocurred, it will save the current stack pointer
* in the running TCB, no need to pass it as a parameter */
call rtos_int_enter
/* If this is a non-nested interrupt, SP now points to the interrupt stack */
/* Before dispatch c handler, restore interrupt to enable nested intr */
csrr s1, mcause
csrr s2, mstatus
#if !SOC_INT_HW_NESTED_SUPPORTED
/* Save the interrupt threshold level */
li t0, INTERRUPT_CURRENT_CORE_INT_THRESH_REG
lw s3, 0(t0)
/* Increase interrupt threshold level */
li t2, VECTORS_MCAUSE_REASON_MASK
and t1, s1, t2 /* t1 = mcause & mask */
slli t1, t1, 2 /* t1 = mcause * 4 */
li t2, INTC_INT_PRIO_REG(0)
add t1, t2, t1 /* t1 = INTC_INT_PRIO_REG + 4 * mcause */
lw t2, 0(t1) /* t2 = INTC_INT_PRIO_REG[mcause] */
addi t2, t2, 1 /* t2 = t2 +1 */
sw t2, 0(t0) /* INTERRUPT_CURRENT_CORE_INT_THRESH_REG = t2 */
fence
#endif // !SOC_INT_HW_NESTED_SUPPORTED
csrsi mstatus, 0x8
/* MIE set. Nested interrupts can now occur */
#ifdef CONFIG_PM_TRACE
li a0, 0 /* = ESP_PM_TRACE_IDLE */
#if SOC_CPU_CORES_NUM == 1
li a1, 0 /* No need to check core ID on single core hardware */
#else
csrr a1, mhartid
#endif
la t0, esp_pm_trace_exit
jalr t0 /* absolute jump, avoid the 1 MiB range constraint */
#endif
#ifdef CONFIG_PM_ENABLE
la t0, esp_pm_impl_isr_hook
jalr t0 /* absolute jump, avoid the 1 MiB range constraint */
#endif
/* call the C dispatcher */
mv a0, sp /* argument 1, stack pointer */
mv a1, s1 /* argument 2, interrupt number (mcause) */
/* mask off the interrupt flag of mcause */
li t0, VECTORS_MCAUSE_REASON_MASK
and a1, a1, t0
jal _global_interrupt_handler
/* After dispatch c handler, disable interrupt to make freertos make context switch */
csrci mstatus, 0x8
/* MIE cleared. Nested interrupts are disabled */
#if !SOC_INT_HW_NESTED_SUPPORTED
/* restore the interrupt threshold level */
li t0, INTERRUPT_CURRENT_CORE_INT_THRESH_REG
sw s3, 0(t0)
fence
#endif // !SOC_INT_HW_NESTED_SUPPORTED
/* The RTOS will restore the current TCB stack pointer. This routine will preserve s1 and s2.
* Returns the new `mstatus` value. */
mv a0, s2 /* a0 = mstatus */
call rtos_int_exit
/* Restore the rest of the registers.
* In case the target uses the CLIC, it is mandatory to restore `mcause` register since it contains
* the former CPU priority. When executing `mret`, the hardware will restore the former threshold,
* from `mcause` to `mintstatus` CSR */
csrw mcause, s1
csrw mstatus, a0
restore_mepc
restore_general_regs
/* exit, this will also re-enable the interrupts */
mret
.size _interrupt_handler, .-_interrupt_handler