esp-idf/components/usb/usbh.c
2024-05-07 15:07:51 +02:00

1580 lines
59 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "hcd.h"
#include "usbh.h"
#include "usb/usb_helpers.h"
#include "usb/usb_types_ch9.h"
#define EP_NUM_MIN 1 // The smallest possible non-default endpoint number
#define EP_NUM_MAX 16 // The largest possible non-default endpoint number
#define NUM_NON_DEFAULT_EP ((EP_NUM_MAX - 1) * 2) // The total number of non-default endpoints a device can have.
// Device action flags. LISTED IN THE ORDER THEY SHOULD BE HANDLED IN within usbh_process(). Some actions are mutually exclusive
typedef enum {
DEV_ACTION_EPn_HALT_FLUSH = (1 << 0), // Halt all non-default endpoints then flush them (called after a device gone is gone)
DEV_ACTION_EP0_FLUSH = (1 << 1), // Retire all URBS submitted to EP0
DEV_ACTION_EP0_DEQUEUE = (1 << 2), // Dequeue all URBs from EP0
DEV_ACTION_EP0_CLEAR = (1 << 3), // Move EP0 to the the active state
DEV_ACTION_PROP_GONE_EVT = (1 << 4), // Propagate a USBH_EVENT_DEV_GONE event
DEV_ACTION_FREE = (1 << 5), // Free the device object
DEV_ACTION_PROP_NEW_DEV = (1 << 6), // Propagate a USBH_EVENT_NEW_DEV event
} dev_action_t;
typedef struct device_s device_t;
typedef struct {
struct {
usbh_ep_cb_t ep_cb; /**< Endpoint callback is called when transfer in complete or error occurred */
void *ep_cb_arg; /**< Endpoint callback argument */
hcd_pipe_handle_t pipe_hdl; /**< Endpoint HCD pipe handle */
device_t *dev; /**< Pointer to the device object that this endpoint is contained in */
const usb_ep_desc_t *ep_desc; /**< This just stores a pointer endpoint descriptor inside the device's "config_desc" */
} constant; /**< Constant members. Do not change after installation thus do not require a critical section or mutex */
} endpoint_t;
struct device_s {
struct {
TAILQ_ENTRY(device_s) tailq_entry; /**< Entry for the device object tailq */
union {
struct {
uint32_t in_pending_list: 1; /**< Device is in pending list */
uint32_t is_gone: 1; /**< Device is gone (disconnected or port error) */
uint32_t waiting_free: 1; /**< Device object is awaiting to be freed */
uint32_t enum_lock: 1; /**< Device is locked for enumeration. Enum information (e.g., address, device/config desc etc) may change */
uint32_t reserved28: 28; /**< Reserved */
};
uint32_t val; /**< Device flags value */
} flags;
uint32_t action_flags; /**< Device action flags */
int num_ctrl_xfers_inflight; /**< Amount of ongoing Control transfers */
usb_device_state_t state; /**< Device state */
uint32_t open_count; /**< Amount of clients which opened this device */
} dynamic; /**< Dynamic members. Require a critical section */
struct {
/*
- Endpoint object pointers for each possible non-default endpoint
- All OUT EPs are listed before IN EPs (i.e., EP_NUM_MIN OUT ... EP_NUM_MAX OUT ... EP_NUM_MIN IN ... EP_NUM_MAX)
*/
endpoint_t *endpoints[NUM_NON_DEFAULT_EP];
} mux_protected; /**< Mutex protected members. Must be protected by the USBH mux_lock when accessed */
// Constant members do not require a critical section
struct {
// Assigned on device allocation and remain constant for the device's lifetime
hcd_pipe_handle_t default_pipe; /**< Pipe handle for Control EP0 */
hcd_port_handle_t port_hdl; /**< HCD port handle */
usb_device_handle_t parent_dev_hdl; /**< Device's parent device handle. NULL if device is connected to the root port */
uint8_t parent_port_num; /**< Device's parent port number. 0 if device connected to the root port */
usb_speed_t speed; /**< Device's speed */
unsigned int uid; /**< Device's Unique ID */
/*
These fields are can only be changed when enum_lock is set, thus can be treated as constant
*/
uint8_t address; /**< Device's bus address */
usb_device_desc_t *desc; /**< Device's descriptor pointer */
usb_config_desc_t *config_desc; /**< Device's configuration descriptor pointer. NULL if not configured. */
usb_str_desc_t *str_desc_manu; /**< Device's Manufacturer string descriptor pointer */
usb_str_desc_t *str_desc_product; /**< Device's Product string descriptor pointer */
usb_str_desc_t *str_desc_ser_num; /**< Device's Serial string descriptor pointer */
} constant; /**< Constant members. Do not change after installation thus do not require a critical section or mutex */
};
typedef struct {
struct {
TAILQ_HEAD(tailhead_devs, device_s) devs_idle_tailq; /**< Tailq of all enum and configured devices */
TAILQ_HEAD(tailhead_devs_cb, device_s) devs_pending_tailq; /**< Tailq of devices that need to have their cb called */
} dynamic; /**< Dynamic members. Require a critical section */
struct {
uint8_t num_device; /**< Current number of device objects */
} mux_protected; /**< Mutex protected members. Must be protected by the USBH mux_lock when accessed */
struct {
usb_proc_req_cb_t proc_req_cb; /**< USB Host process request callback. Refer to proc_req_callback() in usb_host.c */
void *proc_req_cb_arg; /**< USB Host process request callback argument */
usbh_event_cb_t event_cb; /**< USBH event callback */
void *event_cb_arg; /**< USBH event callback argument */
SemaphoreHandle_t mux_lock; /**< Mutex for protected members */
} constant; /**< Constant members. Do not change after installation thus do not require a critical section or mutex */
} usbh_t;
static usbh_t *p_usbh_obj = NULL;
static portMUX_TYPE usbh_lock = portMUX_INITIALIZER_UNLOCKED;
const char *USBH_TAG = "USBH";
#define USBH_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&usbh_lock)
#define USBH_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&usbh_lock)
#define USBH_ENTER_CRITICAL() portENTER_CRITICAL(&usbh_lock)
#define USBH_EXIT_CRITICAL() portEXIT_CRITICAL(&usbh_lock)
#define USBH_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&usbh_lock)
#define USBH_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&usbh_lock)
#define USBH_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define USBH_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
USBH_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// ------------------------------------------------- Forward Declare ---------------------------------------------------
static bool ep0_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr);
static bool epN_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr);
static bool _dev_set_actions(device_t *dev_obj, uint32_t action_flags);
// -----------------------------------------------------------------------------
// ---------------------------- Helpers ----------------------------------------
// -----------------------------------------------------------------------------
static device_t *_find_dev_from_uid(unsigned int uid)
{
/*
THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION
*/
device_t *dev_iter;
// Search the device lists for a device with the specified address
TAILQ_FOREACH(dev_iter, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (dev_iter->constant.uid == uid) {
return dev_iter;
}
}
TAILQ_FOREACH(dev_iter, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) {
if (dev_iter->constant.uid == uid) {
return dev_iter;
}
}
return NULL;
}
static device_t *_find_dev_from_addr(uint8_t dev_addr)
{
/*
THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION
*/
device_t *dev_iter;
// Search the device lists for a device with the specified address
TAILQ_FOREACH(dev_iter, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (dev_iter->constant.address == dev_addr) {
return dev_iter;
}
}
TAILQ_FOREACH(dev_iter, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) {
if (dev_iter->constant.address == dev_addr) {
return dev_iter;
}
}
return NULL;
}
static inline bool check_ep_addr(uint8_t bEndpointAddress)
{
/*
Check that the bEndpointAddress is valid
- Must be <= EP_NUM_MAX (e.g., 16)
- Must be >= EP_NUM_MIN (e.g., 1).
- EP0 is the owned/managed by USBH, thus must never by directly addressed by users (see USB 2.0 section 10.5.1.2)
*/
uint8_t addr = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK;
return (addr >= EP_NUM_MIN) && (addr <= EP_NUM_MAX);
}
static endpoint_t *get_ep_from_addr(device_t *dev_obj, uint8_t bEndpointAddress)
{
/*
CALLER IS RESPONSIBLE FOR TAKING THE mux_lock
*/
// Calculate index to the device's endpoint object list
int index;
// EP_NUM_MIN should map to an index of 0
index = (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) - EP_NUM_MIN;
assert(index >= 0); // Endpoint address is not supported
if (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK) {
// OUT EPs are listed before IN EPs, so add an offset
index += (EP_NUM_MAX - EP_NUM_MIN);
}
return dev_obj->mux_protected.endpoints[index];
}
static inline void set_ep_from_addr(device_t *dev_obj, uint8_t bEndpointAddress, endpoint_t *ep_obj)
{
/*
CALLER IS RESPONSIBLE FOR TAKING THE mux_lock
*/
// Calculate index to the device's endpoint object list
int index;
// EP_NUM_MIN should map to an index of 0
index = (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) - EP_NUM_MIN;
assert(index >= 0); // Endpoint address is not supported
if (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK) {
// OUT EPs are listed before IN EPs, so add an offset
index += (EP_NUM_MAX - EP_NUM_MIN);
}
dev_obj->mux_protected.endpoints[index] = ep_obj;
}
static bool urb_check_args(urb_t *urb)
{
if (urb->transfer.callback == NULL) {
ESP_LOGE(USBH_TAG, "usb_transfer_t callback is NULL");
return false;
}
if (urb->transfer.num_bytes > urb->transfer.data_buffer_size) {
ESP_LOGE(USBH_TAG, "usb_transfer_t num_bytes > data_buffer_size");
return false;
}
return true;
}
static bool transfer_check_usb_compliance(usb_transfer_t *transfer, usb_transfer_type_t type, unsigned int mps, bool is_in)
{
if (type == USB_TRANSFER_TYPE_CTRL) {
// Check that num_bytes and wLength are set correctly
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
bool mismatch = false;
if (is_in) {
// For IN transfers, 'num_bytes >= sizeof(usb_setup_packet_t) + setup_pkt->wLength' due to MPS rounding
mismatch = (transfer->num_bytes < sizeof(usb_setup_packet_t) + setup_pkt->wLength);
} else {
// For OUT transfers, num_bytes must match 'sizeof(usb_setup_packet_t) + setup_pkt->wLength'
mismatch = (transfer->num_bytes != sizeof(usb_setup_packet_t) + setup_pkt->wLength);
}
if (mismatch) {
ESP_LOGE(USBH_TAG, "usb_transfer_t num_bytes %d and usb_setup_packet_t wLength %d mismatch", transfer->num_bytes, setup_pkt->wLength);
return false;
}
} else if (type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
// Check that there is at least one isochronous packet descriptor
if (transfer->num_isoc_packets <= 0) {
ESP_LOGE(USBH_TAG, "usb_transfer_t num_isoc_packets is 0");
return false;
}
// Check that sum of all packet lengths add up to transfer length
// If IN, check that each packet length is integer multiple of MPS
int total_num_bytes = 0;
bool mod_mps_all_zero = true;
for (int i = 0; i < transfer->num_isoc_packets; i++) {
total_num_bytes += transfer->isoc_packet_desc[i].num_bytes;
if (transfer->isoc_packet_desc[i].num_bytes % mps != 0) {
mod_mps_all_zero = false;
}
}
if (transfer->num_bytes != total_num_bytes) {
ESP_LOGE(USBH_TAG, "ISOC transfer num_bytes != num_bytes of all packets");
return false;
}
if (is_in && !mod_mps_all_zero) {
ESP_LOGE(USBH_TAG, "ISOC IN num_bytes not integer multiple of MPS");
return false;
}
} else {
// Check that IN transfers are integer multiple of MPS
if (is_in && (transfer->num_bytes % mps != 0)) {
ESP_LOGE(USBH_TAG, "IN transfer num_bytes not integer multiple of MPS");
return false;
}
}
return true;
}
// -----------------------------------------------------------------------------
// ----------------------------- Allocation ------------------------------------
// -----------------------------------------------------------------------------
static esp_err_t endpoint_alloc(device_t *dev_obj, const usb_ep_desc_t *ep_desc, usbh_ep_config_t *ep_config, endpoint_t **ep_obj_ret)
{
esp_err_t ret;
endpoint_t *ep_obj;
hcd_pipe_handle_t pipe_hdl;
ep_obj = heap_caps_calloc(1, sizeof(endpoint_t), MALLOC_CAP_DEFAULT);
if (ep_obj == NULL) {
return ESP_ERR_NO_MEM;
}
// Allocate the EP's underlying pipe
hcd_pipe_config_t pipe_config = {
.callback = epN_pipe_callback,
.callback_arg = (void *)ep_obj,
.context = ep_config->context,
.ep_desc = ep_desc,
.dev_speed = dev_obj->constant.speed,
.dev_addr = dev_obj->constant.address,
};
ret = hcd_pipe_alloc(dev_obj->constant.port_hdl, &pipe_config, &pipe_hdl);
if (ret != ESP_OK) {
goto pipe_err;
}
// Initialize the endpoint object
ep_obj->constant.pipe_hdl = pipe_hdl;
ep_obj->constant.ep_cb = ep_config->ep_cb;
ep_obj->constant.ep_cb_arg = ep_config->ep_cb_arg;
ep_obj->constant.dev = dev_obj;
ep_obj->constant.ep_desc = ep_desc;
// Return the endpoint object
*ep_obj_ret = ep_obj;
ret = ESP_OK;
return ret;
pipe_err:
heap_caps_free(ep_obj);
return ret;
}
static void endpoint_free(endpoint_t *ep_obj)
{
if (ep_obj == NULL) {
return;
}
// Deallocate the EP's underlying pipe
ESP_ERROR_CHECK(hcd_pipe_free(ep_obj->constant.pipe_hdl));
// Free the heap object
heap_caps_free(ep_obj);
}
static esp_err_t device_alloc(usbh_dev_params_t *params, device_t **dev_obj_ret)
{
device_t *dev_obj = heap_caps_calloc(1, sizeof(device_t), MALLOC_CAP_DEFAULT);
if (dev_obj == NULL) {
return ESP_ERR_NO_MEM;
}
esp_err_t ret;
// Allocate a pipe for EP0
hcd_pipe_config_t pipe_config = {
.callback = ep0_pipe_callback,
.callback_arg = (void *)dev_obj,
.context = (void *)dev_obj,
.ep_desc = NULL, // No endpoint descriptor means we're allocating a pipe for EP0
.dev_speed = params->speed,
.dev_addr = 0,
};
hcd_pipe_handle_t default_pipe_hdl;
ret = hcd_pipe_alloc(params->root_port_hdl, &pipe_config, &default_pipe_hdl);
if (ret != ESP_OK) {
goto err;
}
// Initialize device object
dev_obj->dynamic.state = USB_DEVICE_STATE_DEFAULT;
dev_obj->constant.default_pipe = default_pipe_hdl;
dev_obj->constant.port_hdl = params->root_port_hdl;
dev_obj->constant.parent_dev_hdl = params->parent_dev_hdl;
dev_obj->constant.parent_port_num = params->parent_port_num;
dev_obj->constant.speed = params->speed;
dev_obj->constant.uid = params->uid;
// Note: Enumeration related dev_obj->constant fields are initialized later using usbh_dev_set_...() functions
// Write-back device object
*dev_obj_ret = dev_obj;
ret = ESP_OK;
return ret;
err:
heap_caps_free(dev_obj);
return ret;
}
static void device_free(device_t *dev_obj)
{
if (dev_obj == NULL) {
return;
}
// Device descriptor might not have been allocated (in case of early enumeration failure)
if (dev_obj->constant.desc) {
heap_caps_free(dev_obj->constant.desc);
}
// Configuration might not have been allocated (in case of early enumeration failure)
if (dev_obj->constant.config_desc) {
heap_caps_free(dev_obj->constant.config_desc);
}
// String descriptors might not have been set yet
if (dev_obj->constant.str_desc_manu) {
heap_caps_free(dev_obj->constant.str_desc_manu);
}
if (dev_obj->constant.str_desc_product) {
heap_caps_free(dev_obj->constant.str_desc_product);
}
if (dev_obj->constant.str_desc_ser_num) {
heap_caps_free(dev_obj->constant.str_desc_ser_num);
}
ESP_ERROR_CHECK(hcd_pipe_free(dev_obj->constant.default_pipe));
heap_caps_free(dev_obj);
}
// -----------------------------------------------------------------------------
// -------------------------- Callbacks ----------------------------------------
// -----------------------------------------------------------------------------
static bool ep0_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
uint32_t action_flags;
device_t *dev_obj = (device_t *)user_arg;
switch (pipe_event) {
case HCD_PIPE_EVENT_URB_DONE:
// A control transfer completed on EP0's pipe . We need to dequeue it
action_flags = DEV_ACTION_EP0_DEQUEUE;
break;
case HCD_PIPE_EVENT_ERROR_XFER:
case HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL:
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
// EP0's pipe has encountered an error. We need to retire all URBs, dequeue them, then make the pipe active again
action_flags = DEV_ACTION_EP0_FLUSH |
DEV_ACTION_EP0_DEQUEUE |
DEV_ACTION_EP0_CLEAR;
if (in_isr) {
ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address);
} else {
ESP_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address);
}
break;
case HCD_PIPE_EVENT_ERROR_STALL:
// EP0's pipe encountered a "protocol stall". We just need to dequeue URBs then make the pipe active again
action_flags = DEV_ACTION_EP0_DEQUEUE | DEV_ACTION_EP0_CLEAR;
if (in_isr) {
ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address);
} else {
ESP_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address);
}
break;
default:
action_flags = 0;
break;
}
USBH_ENTER_CRITICAL_SAFE();
bool call_proc_req_cb = _dev_set_actions(dev_obj, action_flags);
USBH_EXIT_CRITICAL_SAFE();
bool yield = false;
if (call_proc_req_cb) {
yield = p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, in_isr, p_usbh_obj->constant.proc_req_cb_arg);
}
return yield;
}
static bool epN_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
endpoint_t *ep_obj = (endpoint_t *)user_arg;
return ep_obj->constant.ep_cb((usbh_ep_handle_t)ep_obj,
(usbh_ep_event_t)pipe_event,
ep_obj->constant.ep_cb_arg,
in_isr);
}
// -----------------------------------------------------------------------------
// ------------------------- Event Related -------------------------------------
// -----------------------------------------------------------------------------
static bool _dev_set_actions(device_t *dev_obj, uint32_t action_flags)
{
/*
THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION
*/
if (action_flags == 0) {
return false;
}
bool call_proc_req_cb;
// Check if device is already on the callback list
if (!dev_obj->dynamic.flags.in_pending_list) {
// Move device form idle device list to callback device list
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
dev_obj->dynamic.action_flags |= action_flags;
dev_obj->dynamic.flags.in_pending_list = 1;
call_proc_req_cb = true;
} else {
// The device is already on the callback list, thus a processing request is already pending.
dev_obj->dynamic.action_flags |= action_flags;
call_proc_req_cb = false;
}
return call_proc_req_cb;
}
static inline void handle_epn_halt_flush(device_t *dev_obj)
{
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
// Halt then flush all non-default EPs
for (int i = 0; i < NUM_NON_DEFAULT_EP; i++) {
if (dev_obj->mux_protected.endpoints[i] != NULL) {
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.endpoints[i]->constant.pipe_hdl, HCD_PIPE_CMD_HALT));
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.endpoints[i]->constant.pipe_hdl, HCD_PIPE_CMD_FLUSH));
}
}
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
}
static inline void handle_ep0_flush(device_t *dev_obj)
{
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_HALT));
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_FLUSH));
}
static inline void handle_ep0_dequeue(device_t *dev_obj)
{
// Empty URBs from EP0's pipe and call the control transfer callback
ESP_LOGD(USBH_TAG, "Default pipe device %d", dev_obj->constant.address);
int num_urbs = 0;
urb_t *urb = hcd_urb_dequeue(dev_obj->constant.default_pipe);
while (urb != NULL) {
num_urbs++;
usbh_event_data_t event_data = {
.event = USBH_EVENT_CTRL_XFER,
.ctrl_xfer_data = {
.dev_hdl = (usb_device_handle_t)dev_obj,
.urb = urb,
},
};
p_usbh_obj->constant.event_cb(&event_data, p_usbh_obj->constant.event_cb_arg);
urb = hcd_urb_dequeue(dev_obj->constant.default_pipe);
}
USBH_ENTER_CRITICAL();
dev_obj->dynamic.num_ctrl_xfers_inflight -= num_urbs;
USBH_EXIT_CRITICAL();
}
static inline void handle_ep0_clear(device_t *dev_obj)
{
// We allow the pipe command to fail just in case the pipe becomes invalid mid command
hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_CLEAR);
}
static inline void handle_prop_gone_evt(device_t *dev_obj)
{
// Flush EP0's pipe. Then propagate a USBH_EVENT_DEV_GONE event
ESP_LOGE(USBH_TAG, "Device %d gone", dev_obj->constant.address);
usbh_event_data_t event_data = {
.event = USBH_EVENT_DEV_GONE,
.dev_gone_data = {
.dev_addr = dev_obj->constant.address,
.dev_hdl = (usb_device_handle_t)dev_obj,
},
};
p_usbh_obj->constant.event_cb(&event_data, p_usbh_obj->constant.event_cb_arg);
}
static inline void handle_free(device_t *dev_obj)
{
// Cache a copy of the device's address as we are about to free the device object
const unsigned int dev_uid = dev_obj->constant.uid;
usb_device_handle_t parent_dev_hdl = dev_obj->constant.parent_dev_hdl;
const uint8_t parent_port_num = dev_obj->constant.parent_port_num;
bool all_free;
ESP_LOGD(USBH_TAG, "Freeing device %d", dev_obj->constant.address);
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
USBH_ENTER_CRITICAL();
// Remove the device object for it's containing list
if (dev_obj->dynamic.flags.in_pending_list) {
dev_obj->dynamic.flags.in_pending_list = 0;
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
} else {
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
}
USBH_EXIT_CRITICAL();
p_usbh_obj->mux_protected.num_device--;
all_free = (p_usbh_obj->mux_protected.num_device == 0);
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
device_free(dev_obj);
// Propagate USBH_EVENT_DEV_FREE event
usbh_event_data_t event_data = {
.event = USBH_EVENT_DEV_FREE,
.dev_free_data = {
.dev_uid = dev_uid,
.parent_dev_hdl = parent_dev_hdl,
.port_num = parent_port_num,
}
};
p_usbh_obj->constant.event_cb(&event_data, p_usbh_obj->constant.event_cb_arg);
// If all devices have been freed, propagate a USBH_EVENT_ALL_FREE event
if (all_free) {
ESP_LOGD(USBH_TAG, "Device all free");
event_data.event = USBH_EVENT_ALL_FREE;
p_usbh_obj->constant.event_cb(&event_data, p_usbh_obj->constant.event_cb_arg);
}
}
static inline void handle_prop_new_dev(device_t *dev_obj)
{
ESP_LOGD(USBH_TAG, "New device %d", dev_obj->constant.address);
usbh_event_data_t event_data = {
.event = USBH_EVENT_NEW_DEV,
.new_dev_data = {
.dev_addr = dev_obj->constant.address,
},
};
p_usbh_obj->constant.event_cb(&event_data, p_usbh_obj->constant.event_cb_arg);
}
// -----------------------------------------------------------------------------
// ------------------------- USBH Processing Functions -------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_install(const usbh_config_t *usbh_config)
{
USBH_CHECK(usbh_config != NULL, ESP_ERR_INVALID_ARG);
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj == NULL, ESP_ERR_INVALID_STATE);
USBH_EXIT_CRITICAL();
esp_err_t ret;
usbh_t *usbh_obj = heap_caps_calloc(1, sizeof(usbh_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex();
if (usbh_obj == NULL || mux_lock == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
// Initialize USBH object
TAILQ_INIT(&usbh_obj->dynamic.devs_idle_tailq);
TAILQ_INIT(&usbh_obj->dynamic.devs_pending_tailq);
usbh_obj->constant.proc_req_cb = usbh_config->proc_req_cb;
usbh_obj->constant.proc_req_cb_arg = usbh_config->proc_req_cb_arg;
usbh_obj->constant.event_cb = usbh_config->event_cb;
usbh_obj->constant.event_cb_arg = usbh_config->event_cb_arg;
usbh_obj->constant.mux_lock = mux_lock;
// Assign USBH object pointer
USBH_ENTER_CRITICAL();
if (p_usbh_obj != NULL) {
USBH_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto err;
}
p_usbh_obj = usbh_obj;
USBH_EXIT_CRITICAL();
ret = ESP_OK;
return ret;
err:
if (mux_lock != NULL) {
vSemaphoreDelete(mux_lock);
}
heap_caps_free(usbh_obj);
return ret;
}
esp_err_t usbh_uninstall(void)
{
// Check that USBH is in a state to be uninstalled
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE);
usbh_t *usbh_obj = p_usbh_obj;
USBH_EXIT_CRITICAL();
esp_err_t ret;
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(usbh_obj->constant.mux_lock, portMAX_DELAY);
if (p_usbh_obj->mux_protected.num_device > 0) {
// There are still devices allocated. Can't uninstall right now.
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Check again if we can uninstall
USBH_ENTER_CRITICAL();
assert(p_usbh_obj == usbh_obj);
p_usbh_obj = NULL;
USBH_EXIT_CRITICAL();
xSemaphoreGive(usbh_obj->constant.mux_lock);
// Free resources
vSemaphoreDelete(usbh_obj->constant.mux_lock);
heap_caps_free(usbh_obj);
ret = ESP_OK;
return ret;
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
esp_err_t usbh_process(void)
{
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE);
// Keep processing until all device's with pending events have been handled
while (!TAILQ_EMPTY(&p_usbh_obj->dynamic.devs_pending_tailq)) {
// Move the device back into the idle device list,
device_t *dev_obj = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq);
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
// Clear the device's flags
uint32_t action_flags = dev_obj->dynamic.action_flags;
dev_obj->dynamic.action_flags = 0;
dev_obj->dynamic.flags.in_pending_list = 0;
/* ---------------------------------------------------------------------
Exit critical section to handle device action flags in their listed order
--------------------------------------------------------------------- */
USBH_EXIT_CRITICAL();
ESP_LOGD(USBH_TAG, "Processing actions 0x%"PRIx32"", action_flags);
if (action_flags & DEV_ACTION_EPn_HALT_FLUSH) {
handle_epn_halt_flush(dev_obj);
}
if (action_flags & DEV_ACTION_EP0_FLUSH) {
handle_ep0_flush(dev_obj);
}
if (action_flags & DEV_ACTION_EP0_DEQUEUE) {
handle_ep0_dequeue(dev_obj);
}
if (action_flags & DEV_ACTION_EP0_CLEAR) {
handle_ep0_clear(dev_obj);
}
if (action_flags & DEV_ACTION_PROP_GONE_EVT) {
handle_prop_gone_evt(dev_obj);
}
/*
Note: We make these action flags mutually exclusive in case they happen in rapid succession. They are handled
in the order of precedence
For example
- New device event is requested followed immediately by a disconnection
*/
if (action_flags & DEV_ACTION_FREE) {
handle_free(dev_obj);
} else if (action_flags & DEV_ACTION_PROP_NEW_DEV) {
handle_prop_new_dev(dev_obj);
}
USBH_ENTER_CRITICAL();
/* ---------------------------------------------------------------------
Re-enter critical sections. All device action flags should have been handled.
--------------------------------------------------------------------- */
}
USBH_EXIT_CRITICAL();
return ESP_OK;
}
// -----------------------------------------------------------------------------
// ------------------------- Device Pool Functions -----------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_devs_num(int *num_devs_ret)
{
USBH_CHECK(num_devs_ret != NULL, ESP_ERR_INVALID_ARG);
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
*num_devs_ret = p_usbh_obj->mux_protected.num_device;
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ESP_OK;
}
esp_err_t usbh_devs_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret)
{
USBH_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG);
int num_filled = 0;
device_t *dev_obj;
USBH_ENTER_CRITICAL();
/*
Fill list with devices from idle tailq and pending tailq. Only devices that
are fully enumerated are added to the list. Thus, the following devices are
not excluded:
- Devices with their enum_lock set
- Devices not in the configured state
- Devices with address 0
*/
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (num_filled < list_len) {
if (!dev_obj->dynamic.flags.enum_lock &&
dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED &&
dev_obj->constant.address != 0) {
dev_addr_list[num_filled] = dev_obj->constant.address;
num_filled++;
}
} else {
// Address list is already full
break;
}
}
// Fill list with devices from pending tailq
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) {
if (num_filled < list_len) {
if (!dev_obj->dynamic.flags.enum_lock &&
dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED &&
dev_obj->constant.address != 0) {
dev_addr_list[num_filled] = dev_obj->constant.address;
num_filled++;
}
} else {
// Address list is already full
break;
}
}
USBH_EXIT_CRITICAL();
// Write back number of devices filled
*num_dev_ret = num_filled;
return ESP_OK;
}
esp_err_t usbh_devs_add(usbh_dev_params_t *params)
{
USBH_CHECK(params != NULL, ESP_ERR_NOT_ALLOWED);
USBH_CHECK(params->root_port_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj;
// Allocate a device object (initialized to address 0)
ret = device_alloc(params, &dev_obj);
if (ret != ESP_OK) {
return ret;
}
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
USBH_ENTER_CRITICAL();
// Check that there is not already a device with the same uid
if (_find_dev_from_uid(params->uid) != NULL) {
ret = ESP_ERR_INVALID_ARG;
goto exit;
}
// Check that there is not already a device currently with address 0
if (_find_dev_from_addr(0) != NULL) {
ret = ESP_ERR_NOT_FINISHED;
goto exit;
}
// Add the device to the idle device list
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
p_usbh_obj->mux_protected.num_device++;
ret = ESP_OK;
exit:
USBH_EXIT_CRITICAL();
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
if (ret != ESP_OK) {
// Free dev_obj for memory not to leak
device_free(dev_obj);
}
return ret;
}
esp_err_t usbh_devs_remove(unsigned int uid)
{
esp_err_t ret;
device_t *dev_obj;
bool call_proc_req_cb = false;
USBH_ENTER_CRITICAL();
dev_obj = _find_dev_from_uid(uid);
if (dev_obj == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
// Mark the device as gone
dev_obj->dynamic.flags.is_gone = 1;
// Check if the device can be freed immediately
if (dev_obj->dynamic.open_count == 0) {
// Device is not currently opened at all. Can free immediately.
call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_FREE);
} else {
// Device is still opened. Flush endpoints and propagate device gone event
call_proc_req_cb = _dev_set_actions(dev_obj,
DEV_ACTION_EPn_HALT_FLUSH |
DEV_ACTION_EP0_FLUSH |
DEV_ACTION_EP0_DEQUEUE |
DEV_ACTION_PROP_GONE_EVT);
}
ret = ESP_OK;
exit:
USBH_EXIT_CRITICAL();
// Call the processing request callback
if (call_proc_req_cb) {
p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg);
}
return ret;
}
esp_err_t usbh_devs_get_parent_info(unsigned int uid, usb_parent_dev_info_t *parent_info)
{
USBH_CHECK(parent_info, ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_FAIL;
device_t *dev_obj = NULL;
USBH_ENTER_CRITICAL();
dev_obj = _find_dev_from_uid(uid);
if (dev_obj == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
} else {
parent_info->dev_hdl = dev_obj->constant.parent_dev_hdl;
parent_info->port_num = dev_obj->constant.parent_port_num;
ret = ESP_OK;
}
exit:
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_devs_mark_all_free(void)
{
USBH_ENTER_CRITICAL();
/*
Go through the device list and mark each device as waiting to be closed. If the device is not opened at all, we can
disable it immediately.
Note: We manually traverse the list because we need to add/remove items while traversing
*/
bool call_proc_req_cb = false;
bool wait_for_free = false;
for (int i = 0; i < 2; i++) {
device_t *dev_obj_cur;
device_t *dev_obj_next;
// Go through pending list first as it's more efficient
if (i == 0) {
dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq);
} else {
dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_idle_tailq);
}
while (dev_obj_cur != NULL) {
// Keep a copy of the next item first in case we remove the current item
dev_obj_next = TAILQ_NEXT(dev_obj_cur, dynamic.tailq_entry);
if (dev_obj_cur->dynamic.open_count == 0) {
// Device is not opened. Can free immediately.
call_proc_req_cb |= _dev_set_actions(dev_obj_cur, DEV_ACTION_FREE);
} else {
// Device is still opened. Just mark it as waiting to be freed
dev_obj_cur->dynamic.flags.waiting_free = 1;
}
// At least one device needs to be freed. User needs to wait for USBH_EVENT_ALL_FREE event
wait_for_free = true;
dev_obj_cur = dev_obj_next;
}
}
USBH_EXIT_CRITICAL();
if (call_proc_req_cb) {
p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg);
}
return (wait_for_free) ? ESP_ERR_NOT_FINISHED : ESP_OK;
}
esp_err_t usbh_devs_open(uint8_t dev_addr, usb_device_handle_t *dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
USBH_ENTER_CRITICAL();
// Go through the device lists to find the device with the specified address
device_t *dev_obj = _find_dev_from_addr(dev_addr);
if (dev_obj != NULL) {
// Check if the device is in a state to be opened
if (dev_obj->dynamic.flags.is_gone || // Device is already gone (disconnected)
dev_obj->dynamic.flags.waiting_free) { // Device is waiting to be freed
ret = ESP_ERR_INVALID_STATE;
} else if (dev_obj->dynamic.flags.enum_lock) { // Device's enum_lock is set
ret = ESP_ERR_NOT_ALLOWED;
} else {
dev_obj->dynamic.open_count++;
*dev_hdl = (usb_device_handle_t)dev_obj;
ret = ESP_OK;
}
} else {
ret = ESP_ERR_NOT_FOUND;
}
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_devs_new_dev_event(usb_device_handle_t dev_hdl)
{
device_t *dev_obj = (device_t *)dev_hdl;
bool call_proc_req_cb = false;
USBH_ENTER_CRITICAL();
// Device must be in the configured state
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE);
call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_PROP_NEW_DEV);
USBH_EXIT_CRITICAL();
// Call the processing request callback
if (call_proc_req_cb) {
p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg);
}
return ESP_OK;
}
// -----------------------------------------------------------------------------
// ---------------------------- Device Functions -------------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_dev_close(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
// Device should never be closed while its enum_lock is
USBH_CHECK_FROM_CRIT(!dev_obj->dynamic.flags.enum_lock, ESP_ERR_NOT_ALLOWED);
dev_obj->dynamic.open_count--;
bool call_proc_req_cb = false;
if (dev_obj->dynamic.open_count == 0) {
// Sanity check.
assert(dev_obj->dynamic.num_ctrl_xfers_inflight == 0); // There cannot be any control transfer in-flight
assert(!dev_obj->dynamic.flags.waiting_free); // This can only be set when open_count reaches 0
if (dev_obj->dynamic.flags.is_gone || dev_obj->dynamic.flags.waiting_free) {
// Device is already gone or is awaiting to be freed. Trigger the USBH process to free the device
call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_FREE);
}
// Else, there's nothing to do. Leave the device allocated
}
USBH_EXIT_CRITICAL();
if (call_proc_req_cb) {
p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg);
}
return ESP_OK;
}
// -----------------------------------------------------------------------------
// ---------------------------- Getters ----------------------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_dev_get_addr(usb_device_handle_t dev_hdl, uint8_t *dev_addr)
{
USBH_CHECK(dev_hdl != NULL && dev_addr != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
*dev_addr = dev_obj->constant.address;
USBH_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usbh_dev_get_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info)
{
USBH_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
dev_info->parent.dev_hdl = dev_obj->constant.parent_dev_hdl;
dev_info->parent.port_num = dev_obj->constant.parent_port_num;
dev_info->speed = dev_obj->constant.speed;
dev_info->dev_addr = dev_obj->constant.address;
// Device descriptor might not have been set yet
if (dev_obj->constant.desc) {
dev_info->bMaxPacketSize0 = dev_obj->constant.desc->bMaxPacketSize0;
} else {
// Use the default pipe's MPS instead
dev_info->bMaxPacketSize0 = hcd_pipe_get_mps(dev_obj->constant.default_pipe);
}
// Configuration descriptor might not have been set yet
if (dev_obj->constant.config_desc) {
dev_info->bConfigurationValue = dev_obj->constant.config_desc->bConfigurationValue;
} else {
dev_info->bConfigurationValue = 0;
}
dev_info->str_desc_manufacturer = dev_obj->constant.str_desc_manu;
dev_info->str_desc_product = dev_obj->constant.str_desc_product;
dev_info->str_desc_serial_num = dev_obj->constant.str_desc_ser_num;
return ESP_OK;
}
esp_err_t usbh_dev_get_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t **dev_desc_ret)
{
USBH_CHECK(dev_hdl != NULL && dev_desc_ret != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
*dev_desc_ret = dev_obj->constant.desc;
return ESP_OK;
}
esp_err_t usbh_dev_get_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc_ret)
{
USBH_CHECK(dev_hdl != NULL && config_desc_ret != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
*config_desc_ret = dev_obj->constant.config_desc;
return ESP_OK;
}
// -----------------------------------------------------------------------------
// -------------------------------- Setters ------------------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_dev_enum_lock(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
/*
The device's enum_lock can only be set when the following conditions are met:
- No other endpoints except EP0 have been allocated
- We are the sole opener
- Device's enum_lock is not already set
*/
// Check that no other endpoints except EP0 have been allocated
bool ep_found = false;
for (int i = 0; i < NUM_NON_DEFAULT_EP; i++) {
if (dev_obj->mux_protected.endpoints[i] != NULL) {
ep_found = true;
break;
}
}
if (ep_found) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Check that we are the sole opener and enum_lock is not already set
USBH_ENTER_CRITICAL();
if (!dev_obj->dynamic.flags.enum_lock && (dev_obj->dynamic.open_count == 1)) {
dev_obj->dynamic.flags.enum_lock = true;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
USBH_EXIT_CRITICAL();
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
esp_err_t usbh_dev_enum_unlock(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
// Device's enum_lock must have been previously set
if (dev_obj->dynamic.flags.enum_lock) {
assert(dev_obj->dynamic.open_count == 1); // We must still be the sole opener
dev_obj->dynamic.flags.enum_lock = false;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_dev_set_ep0_mps(usb_device_handle_t dev_hdl, uint16_t wMaxPacketSize)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
// Device's EP0 MPS can only be updated when in the default state
if (dev_obj->dynamic.state != USB_DEVICE_STATE_DEFAULT) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Device's enum_lock must be set before enumeration related data fields can be set
if (dev_obj->dynamic.flags.enum_lock) {
ret = hcd_pipe_update_mps(dev_obj->constant.default_pipe, wMaxPacketSize);
} else {
ret = ESP_ERR_NOT_ALLOWED;
}
exit:
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_dev_set_addr(usb_device_handle_t dev_hdl, uint8_t dev_addr)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
// Device's address can only be set when in the default state
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_DEFAULT, ESP_ERR_INVALID_STATE);
// Device's enum_lock must be set before enumeration related data fields can be set
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.flags.enum_lock, ESP_ERR_NOT_ALLOWED);
// Update the device and default pipe's target address
ret = hcd_pipe_update_dev_addr(dev_obj->constant.default_pipe, dev_addr);
if (ret == ESP_OK) {
dev_obj->constant.address = dev_addr;
dev_obj->dynamic.state = USB_DEVICE_STATE_ADDRESS;
}
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_dev_set_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t *device_desc)
{
USBH_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
usb_device_desc_t *new_desc, *old_desc;
// Allocate and copy new device descriptor
new_desc = heap_caps_malloc(sizeof(usb_device_desc_t), MALLOC_CAP_DEFAULT);
if (new_desc == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(new_desc, device_desc, sizeof(usb_device_desc_t));
USBH_ENTER_CRITICAL();
// Device's descriptor can only be set in the default or addressed state
if (!(dev_obj->dynamic.state == USB_DEVICE_STATE_DEFAULT || dev_obj->dynamic.state == USB_DEVICE_STATE_ADDRESS)) {
ret = ESP_ERR_INVALID_STATE;
goto err;
}
// Device's enum_lock must be set before we can set its device descriptor
if (!dev_obj->dynamic.flags.enum_lock) {
ret = ESP_ERR_NOT_ALLOWED;
goto err;
}
old_desc = dev_obj->constant.desc; // Save old descriptor for cleanup
dev_obj->constant.desc = new_desc; // Assign new descriptor
USBH_EXIT_CRITICAL();
// Clean up old descriptor or failed assignment
heap_caps_free(old_desc);
ret = ESP_OK;
return ret;
err:
USBH_EXIT_CRITICAL();
heap_caps_free(new_desc);
return ret;
}
esp_err_t usbh_dev_set_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc_full)
{
USBH_CHECK(dev_hdl != NULL && config_desc_full != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
usb_config_desc_t *new_desc, *old_desc;
// Allocate and copy new config descriptor
new_desc = heap_caps_malloc(config_desc_full->wTotalLength, MALLOC_CAP_DEFAULT);
if (new_desc == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(new_desc, config_desc_full, config_desc_full->wTotalLength);
USBH_ENTER_CRITICAL();
// Device's config descriptor can only be set when in the addressed state
if (dev_obj->dynamic.state != USB_DEVICE_STATE_ADDRESS) {
ret = ESP_ERR_INVALID_STATE;
goto err;
}
// Device's enum_lock must be set before we can set its config descriptor
if (!dev_obj->dynamic.flags.enum_lock) {
ret = ESP_ERR_NOT_ALLOWED;
goto err;
}
old_desc = dev_obj->constant.config_desc; // Save old descriptor for cleanup
dev_obj->constant.config_desc = new_desc; // Assign new descriptor
dev_obj->dynamic.state = USB_DEVICE_STATE_CONFIGURED;
USBH_EXIT_CRITICAL();
// Clean up old descriptor or failed assignment
heap_caps_free(old_desc);
ret = ESP_OK;
return ret;
err:
USBH_EXIT_CRITICAL();
heap_caps_free(new_desc);
return ret;
}
esp_err_t usbh_dev_set_str_desc(usb_device_handle_t dev_hdl, const usb_str_desc_t *str_desc, int select)
{
USBH_CHECK(dev_hdl != NULL && str_desc != NULL && (select >= 0 && select < 3), ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
usb_str_desc_t *new_desc, *old_desc;
// Allocate and copy new string descriptor
new_desc = heap_caps_malloc(str_desc->bLength, MALLOC_CAP_DEFAULT);
if (new_desc == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(new_desc, str_desc, str_desc->bLength);
USBH_ENTER_CRITICAL();
// Device's string descriptors can only be set when in the default state
if (dev_obj->dynamic.state != USB_DEVICE_STATE_CONFIGURED) {
ret = ESP_ERR_INVALID_STATE;
goto err;
}
// Device's enum_lock must be set before we can set its string descriptors
if (!dev_obj->dynamic.flags.enum_lock) {
ret = ESP_ERR_NOT_ALLOWED;
goto err;
}
// Assign to the selected descriptor
switch (select) {
case 0:
old_desc = dev_obj->constant.str_desc_manu;
dev_obj->constant.str_desc_manu = new_desc;
break;
case 1:
old_desc = dev_obj->constant.str_desc_product;
dev_obj->constant.str_desc_product = new_desc;
break;
default: // 2
old_desc = dev_obj->constant.str_desc_ser_num;
dev_obj->constant.str_desc_ser_num = new_desc;
break;
}
USBH_EXIT_CRITICAL();
// Clean up old descriptor or failed assignment
heap_caps_free(old_desc);
ret = ESP_OK;
return ret;
err:
USBH_EXIT_CRITICAL();
heap_caps_free(new_desc);
return ret;
}
// -----------------------------------------------------------------------------
// ----------------------------- Endpoint Functions ----------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_ep_alloc(usb_device_handle_t dev_hdl, usbh_ep_config_t *ep_config, usbh_ep_handle_t *ep_hdl_ret)
{
USBH_CHECK(dev_hdl != NULL && ep_config != NULL && ep_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
uint8_t bEndpointAddress = ep_config->bEndpointAddress;
USBH_CHECK(check_ep_addr(bEndpointAddress), ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
endpoint_t *ep_obj;
USBH_CHECK(dev_obj->constant.config_desc, ESP_ERR_INVALID_STATE); // Configuration descriptor must be set
// Find the endpoint descriptor from the device's current configuration descriptor
const usb_ep_desc_t *ep_desc = usb_parse_endpoint_descriptor_by_address(dev_obj->constant.config_desc, ep_config->bInterfaceNumber, ep_config->bAlternateSetting, ep_config->bEndpointAddress, NULL);
if (ep_desc == NULL) {
return ESP_ERR_NOT_FOUND;
}
// Allocate the endpoint object
ret = endpoint_alloc(dev_obj, ep_desc, ep_config, &ep_obj);
if (ret != ESP_OK) {
goto alloc_err;
}
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
USBH_ENTER_CRITICAL();
// Check the device's state before we assign the a pipe to the allocated endpoint
if (dev_obj->dynamic.state != USB_DEVICE_STATE_CONFIGURED) {
USBH_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto dev_state_err;
}
USBH_EXIT_CRITICAL();
// Check if the endpoint has already been allocated
if (get_ep_from_addr(dev_obj, bEndpointAddress) == NULL) {
set_ep_from_addr(dev_obj, bEndpointAddress, ep_obj);
// Write back the endpoint handle
*ep_hdl_ret = (usbh_ep_handle_t)ep_obj;
ret = ESP_OK;
} else {
// Endpoint is already allocated
ret = ESP_ERR_INVALID_STATE;
}
dev_state_err:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
// If the endpoint was not assigned, free it
if (ret != ESP_OK) {
endpoint_free(ep_obj);
}
alloc_err:
return ret;
}
esp_err_t usbh_ep_free(usbh_ep_handle_t ep_hdl)
{
USBH_CHECK(ep_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
endpoint_t *ep_obj = (endpoint_t *)ep_hdl;
device_t *dev_obj = (device_t *)ep_obj->constant.dev;
uint8_t bEndpointAddress = ep_obj->constant.ep_desc->bEndpointAddress;
// Todo: Check that the EP's underlying pipe is halted before allowing the EP to be freed (IDF-7273)
// Check that the the EP's underlying pipe has no more in-flight URBs
if (hcd_pipe_get_num_urbs(ep_obj->constant.pipe_hdl) != 0) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
// Check if the endpoint was allocated on this device
if (ep_obj == get_ep_from_addr(dev_obj, bEndpointAddress)) {
// Clear the endpoint from the device's endpoint object list
set_ep_from_addr(dev_obj, bEndpointAddress, NULL);
ret = ESP_OK;
} else {
ret = ESP_ERR_NOT_FOUND;
}
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
// Finally, we free the endpoint object
if (ret == ESP_OK) {
endpoint_free(ep_obj);
}
exit:
return ret;
}
esp_err_t usbh_ep_get_handle(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress, usbh_ep_handle_t *ep_hdl_ret)
{
USBH_CHECK(dev_hdl != NULL && ep_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
USBH_CHECK(check_ep_addr(bEndpointAddress), ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
endpoint_t *ep_obj;
// We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
ep_obj = get_ep_from_addr(dev_obj, bEndpointAddress);
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
if (ep_obj) {
*ep_hdl_ret = (usbh_ep_handle_t)ep_obj;
ret = ESP_OK;
} else {
ret = ESP_ERR_NOT_FOUND;
}
return ret;
}
esp_err_t usbh_ep_command(usbh_ep_handle_t ep_hdl, usbh_ep_cmd_t command)
{
USBH_CHECK(ep_hdl != NULL, ESP_ERR_INVALID_ARG);
endpoint_t *ep_obj = (endpoint_t *)ep_hdl;
// Send the command to the EP's underlying pipe
return hcd_pipe_command(ep_obj->constant.pipe_hdl, (hcd_pipe_cmd_t)command);
}
void *usbh_ep_get_context(usbh_ep_handle_t ep_hdl)
{
assert(ep_hdl);
endpoint_t *ep_obj = (endpoint_t *)ep_hdl;
return hcd_pipe_get_context(ep_obj->constant.pipe_hdl);
}
// -----------------------------------------------------------------------------
// ------------------------ Transfer Functions ---------------------------------
// -----------------------------------------------------------------------------
esp_err_t usbh_dev_submit_ctrl_urb(usb_device_handle_t dev_hdl, urb_t *urb)
{
USBH_CHECK(dev_hdl != NULL && urb != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_CHECK(urb_check_args(urb), ESP_ERR_INVALID_ARG);
bool xfer_is_in = ((usb_setup_packet_t *)urb->transfer.data_buffer)->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN;
// Device descriptor could still be NULL at this point, so we get the MPS from the pipe instead.
unsigned int mps = hcd_pipe_get_mps(dev_obj->constant.default_pipe);
USBH_CHECK(transfer_check_usb_compliance(&(urb->transfer), USB_TRANSFER_TYPE_CTRL, mps, xfer_is_in), ESP_ERR_INVALID_ARG);
USBH_ENTER_CRITICAL();
// Increment the control transfer count first
dev_obj->dynamic.num_ctrl_xfers_inflight++;
USBH_EXIT_CRITICAL();
esp_err_t ret;
if (hcd_pipe_get_state(dev_obj->constant.default_pipe) != HCD_PIPE_STATE_ACTIVE) {
ret = ESP_ERR_INVALID_STATE;
goto hcd_err;
}
ret = hcd_urb_enqueue(dev_obj->constant.default_pipe, urb);
if (ret != ESP_OK) {
goto hcd_err;
}
ret = ESP_OK;
return ret;
hcd_err:
USBH_ENTER_CRITICAL();
dev_obj->dynamic.num_ctrl_xfers_inflight--;
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_ep_enqueue_urb(usbh_ep_handle_t ep_hdl, urb_t *urb)
{
USBH_CHECK(ep_hdl != NULL && urb != NULL, ESP_ERR_INVALID_ARG);
USBH_CHECK(urb_check_args(urb), ESP_ERR_INVALID_ARG);
endpoint_t *ep_obj = (endpoint_t *)ep_hdl;
USBH_CHECK(transfer_check_usb_compliance(&(urb->transfer),
USB_EP_DESC_GET_XFERTYPE(ep_obj->constant.ep_desc),
USB_EP_DESC_GET_MPS(ep_obj->constant.ep_desc),
USB_EP_DESC_GET_EP_DIR(ep_obj->constant.ep_desc)),
ESP_ERR_INVALID_ARG);
// Check that the EP's underlying pipe is in the active state before submitting the URB
if (hcd_pipe_get_state(ep_obj->constant.pipe_hdl) != HCD_PIPE_STATE_ACTIVE) {
return ESP_ERR_INVALID_STATE;
}
// Enqueue the URB to the EP's underlying pipe
return hcd_urb_enqueue(ep_obj->constant.pipe_hdl, urb);
}
esp_err_t usbh_ep_dequeue_urb(usbh_ep_handle_t ep_hdl, urb_t **urb_ret)
{
USBH_CHECK(ep_hdl != NULL && urb_ret != NULL, ESP_ERR_INVALID_ARG);
endpoint_t *ep_obj = (endpoint_t *)ep_hdl;
// Enqueue the URB to the EP's underlying pipe
*urb_ret = hcd_urb_dequeue(ep_obj->constant.pipe_hdl);
return ESP_OK;
}