esp-idf/components/freertos/esp_additions/freertos_tasks_c_additions.h
Darian Leung 659ec67967 refactor(freertos): Remove option for Task Snapshot
Previously, Task Snapshot could be conditionally built based on the
CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT option. However, there is no overhead
with always enabling Task Snapshot functions, as the linker will remove any
functions if they are not called.

This commit...

- removes all ESP-IDF dependencies on the CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT
option so that Task Snapshot functions are always available.
- Makes CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT a hidden option to maintain
compatibility with user code.
- adds documentation regarding Task Snapshot.
2023-08-28 20:11:27 +08:00

607 lines
25 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "sdkconfig.h"
#include "freertos/idf_additions.h"
#include "esp_private/freertos_idf_additions_priv.h"
/**
* This file will be included in `tasks.c` file, thus, it is treated as a source
* file instead of a header file, and must NOT be included by any (other) file.
* This file is used to add additional functions to `tasks.c`. See the
* `esp_additions/include` directory of the headers that expose these `tasks.c`
* additional API.
*/
/* ------------------------------------------------- Static asserts ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
/**
* Both StaticTask_t and TCB_t structures are provided by FreeRTOS sources.
* This is just an additional check of the consistency of these structures.
*/
_Static_assert(offsetof( StaticTask_t, pxDummy6 ) == offsetof( TCB_t, pxStack ));
_Static_assert(offsetof( StaticTask_t, pxDummy8 ) == offsetof( TCB_t, pxEndOfStack ));
/* ----------------------------------------------------- Newlib --------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if ( configUSE_NEWLIB_REENTRANT == 1 )
/**
* @brief Get reentrancy structure of the current task
*
* - This funciton is required by newlib (when __DYNAMIC_REENT__ is enabled)
* - It will return a pointer to the current task's reent struct
* - If FreeRTOS is not running, it will return the global reent struct
*
* @return Pointer to a the (current taks's)/(globa) reent struct
*/
struct _reent *__getreent(void)
{
// No lock needed because if this changes, we won't be running anymore.
TCB_t *pxCurTask = xTaskGetCurrentTaskHandle();
struct _reent *ret;
if (pxCurTask == NULL) {
// No task running. Return global struct.
ret = _GLOBAL_REENT;
} else {
// We have a task; return its reentrant struct.
ret = &pxCurTask->xNewLib_reent;
}
return ret;
}
#endif // configUSE_NEWLIB_REENTRANT == 1
/* -------------------------------------------------- Task Snapshot ----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#include "freertos/task_snapshot.h"
/**
* @brief List of all task lists in FreeRTOS
*
* @note There are currently differing number of task list between SMP FreeRTOS and ESP-IDF FreeRTOS
*/
static List_t *non_ready_task_lists[] = {
#ifdef CONFIG_FREERTOS_SMP
&xPendingReadyList,
#else
&xPendingReadyList[0],
#ifndef CONFIG_FREERTOS_UNICORE
&xPendingReadyList[1],
#endif // CONFIG_FREERTOS_UNICORE
#endif //CONFIG_FREERTOS_SMP
&xDelayedTaskList1,
&xDelayedTaskList2,
#if( INCLUDE_vTaskDelete == 1 )
&xTasksWaitingTermination,
#endif
#if( INCLUDE_vTaskSuspend == 1 )
&xSuspendedTaskList,
#endif
};
/**
* @brief Get the next task list to traverse
*
* - Given a particular task list, this function returns the next task to traverse.
* - The task lists are returned in the following precedence
* - Ready lists (highest to lowers priority)
* - Pending ready list(s)
* - Delayed list 1
* - Delayed list 2
* - Waiting termination list
* - Suspended list
*
* @param pxCurTaskList Previously traversed task list (or NULL if obtaining the first task list)
* @return List_t* The next task list to traverse (or NULL of all task lists have been traversed)
*/
static List_t *pxGetNextTaskList(List_t *pxCurTaskList)
{
List_t *pxNextTaskList = NULL;
// No Current List. Start from the highest priority ready task list
if (pxCurTaskList == NULL)
{
pxNextTaskList = &pxReadyTasksLists[configMAX_PRIORITIES - 1];
}
// Current list is one of the ready task lists. Find the current priority, and return the next lower priority ready task list
else if (pxCurTaskList >= &pxReadyTasksLists[0] && pxCurTaskList <= &pxReadyTasksLists[configMAX_PRIORITIES - 1] )
{
// Find the current priority
int cur_priority;
for (cur_priority = configMAX_PRIORITIES - 1; cur_priority >= 0; cur_priority--) {
if (pxCurTaskList == &pxReadyTasksLists[cur_priority]) {
break;
}
}
// Return the ready task list at (cur_priority - 1), or the pending ready task list
if (cur_priority > 0)
{
pxNextTaskList = &pxReadyTasksLists[cur_priority - 1];
}
// We've reached the end of the Ready Task Lists. We get the next list from the non-ready task lists
else if (cur_priority == 0)
{
pxNextTaskList = non_ready_task_lists[0];
}
else
{
abort(); // This should never occur
}
}
// Current list is one of the non-ready task lists. Fetch the next non-ready task list
if (pxNextTaskList == NULL) {
int cur_list_idx;
const int num_non_ready_task_lists = (sizeof(non_ready_task_lists) / sizeof(List_t *));
// Note: - 1 so that if the current list is the last on non_ready_task_lists[], the next list will return NULL
for (cur_list_idx = 0; cur_list_idx < num_non_ready_task_lists - 1; cur_list_idx++) {
if (pxCurTaskList == non_ready_task_lists[cur_list_idx]) {
pxNextTaskList = non_ready_task_lists[cur_list_idx + 1];
break;
}
}
}
return pxNextTaskList;
}
TaskHandle_t pxTaskGetNext( TaskHandle_t pxTask )
{
TCB_t *pxTCB = (TCB_t *)pxTask;
// Check current task is valid
if (pxTCB != NULL && !portVALID_TCB_MEM(pxTCB)) {
return NULL;
}
List_t *pxCurTaskList;
const ListItem_t *pxCurListItem;
if (pxTCB == NULL) {
// Starting traversal for the first time
pxCurTaskList = pxGetNextTaskList(NULL);
pxCurListItem = listGET_END_MARKER(pxCurTaskList);
} else {
// Continuing traversal
pxCurTaskList = listLIST_ITEM_CONTAINER(&pxTCB->xStateListItem);
pxCurListItem = &pxTCB->xStateListItem;
}
ListItem_t *pxNextListItem = NULL;
if (pxCurListItem->pxNext == listGET_END_MARKER(pxCurTaskList)) {
List_t *pxNextTaskList = pxGetNextTaskList(pxCurTaskList);
while (pxNextTaskList != NULL) {
if (!listLIST_IS_EMPTY(pxNextTaskList)) {
// Get the first item in the next task list
pxNextListItem = listGET_HEAD_ENTRY(pxNextTaskList);
break;
}
// Task list is empty. Get the next task list
pxNextTaskList = pxGetNextTaskList(pxNextTaskList);
}
} else {
//There are still more items in the current task list. Get the next item
pxNextListItem = listGET_NEXT(pxCurListItem);
}
TCB_t *pxNextTCB;
if (pxNextListItem == NULL) {
pxNextTCB = NULL;
} else {
pxNextTCB = (TCB_t *)listGET_LIST_ITEM_OWNER(pxNextListItem);
}
return pxNextTCB;
}
BaseType_t vTaskGetSnapshot( TaskHandle_t pxTask, TaskSnapshot_t *pxTaskSnapshot )
{
if (portVALID_TCB_MEM(pxTask) == false || pxTaskSnapshot == NULL) {
return pdFALSE;
}
TCB_t *pxTCB = (TCB_t *)pxTask;
pxTaskSnapshot->pxTCB = pxTCB;
pxTaskSnapshot->pxTopOfStack = (StackType_t *)pxTCB->pxTopOfStack;
pxTaskSnapshot->pxEndOfStack = (StackType_t *)pxTCB->pxEndOfStack;
return pdTRUE;
}
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArrayLength, UBaseType_t * const pxTCBSize )
{
UBaseType_t uxArrayNumFilled = 0;
//Traverse all of the tasks lists
List_t *pxCurTaskList = pxGetNextTaskList(NULL); //Get the first task list
while (pxCurTaskList != NULL && uxArrayNumFilled < uxArrayLength) {
if (!listLIST_IS_EMPTY(pxCurTaskList)) {
const ListItem_t *pxCurListItem;
//Walk each task on the current task list
pxCurListItem = listGET_HEAD_ENTRY(pxCurTaskList);
while (pxCurListItem != listGET_END_MARKER(pxCurTaskList)) {
TCB_t *pxTCB = (TCB_t *)listGET_LIST_ITEM_OWNER(pxCurListItem);
vTaskGetSnapshot((TaskHandle_t)pxTCB, &pxTaskSnapshotArray[uxArrayNumFilled]);
uxArrayNumFilled++;
if (!(uxArrayNumFilled < uxArrayLength)) {
break;
}
pxCurListItem = listGET_NEXT(pxCurListItem);
}
}
//Get the next task list
pxCurTaskList = pxGetNextTaskList(pxCurTaskList);
}
*pxTCBSize = sizeof(TCB_t);
return uxArrayNumFilled;
}
/* ----------------------------------------------------- OpenOCD -------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if CONFIG_FREERTOS_DEBUG_OCDAWARE
/**
* Debug param indexes. DO NOT change the order. OpenOCD uses the same indexes
* Entries in FreeRTOS_openocd_params must match the order of these indexes
*/
enum {
ESP_FREERTOS_DEBUG_TABLE_SIZE = 0,
ESP_FREERTOS_DEBUG_TABLE_VERSION,
ESP_FREERTOS_DEBUG_KERNEL_VER_MAJOR,
ESP_FREERTOS_DEBUG_KERNEL_VER_MINOR,
ESP_FREERTOS_DEBUG_KERNEL_VER_BUILD,
ESP_FREERTOS_DEBUG_UX_TOP_USED_PIORITY,
ESP_FREERTOS_DEBUG_PX_TOP_OF_STACK,
ESP_FREERTOS_DEBUG_PC_TASK_NAME,
/* New entries must be inserted here */
ESP_FREERTOS_DEBUG_TABLE_END,
};
const DRAM_ATTR uint8_t FreeRTOS_openocd_params[ESP_FREERTOS_DEBUG_TABLE_END] = {
ESP_FREERTOS_DEBUG_TABLE_END, /* table size */
1, /* table version */
tskKERNEL_VERSION_MAJOR,
tskKERNEL_VERSION_MINOR,
tskKERNEL_VERSION_BUILD,
configMAX_PRIORITIES - 1, /* uxTopUsedPriority */
offsetof(TCB_t, pxTopOfStack), /* thread_stack_offset; */
offsetof(TCB_t, pcTaskName), /* thread_name_offset; */
};
#endif // CONFIG_FREERTOS_DEBUG_OCDAWARE
/* -------------------------------------------- FreeRTOS IDF API Additions ---------------------------------------------
* FreeRTOS related API that were added by IDF
* ------------------------------------------------------------------------------------------------------------------ */
#if CONFIG_FREERTOS_SMP
_Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "CONFIG_FREERTOS_NO_AFFINITY must be the same as tskNO_AFFINITY");
BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint32_t usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
const BaseType_t xCoreID)
{
BaseType_t ret;
#if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) )
{
// Convert xCoreID into an affinity mask
UBaseType_t uxCoreAffinityMask;
if (xCoreID == tskNO_AFFINITY) {
uxCoreAffinityMask = tskNO_AFFINITY;
} else {
uxCoreAffinityMask = (1 << xCoreID);
}
ret = xTaskCreateAffinitySet(pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask);
}
#else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) ) */
{
ret = xTaskCreate(pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask);
}
#endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) ) */
return ret;
}
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
TaskHandle_t xTaskCreateStaticPinnedToCore( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
const BaseType_t xCoreID)
{
TaskHandle_t ret;
#if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) )
{
// Convert xCoreID into an affinity mask
UBaseType_t uxCoreAffinityMask;
if (xCoreID == tskNO_AFFINITY) {
uxCoreAffinityMask = tskNO_AFFINITY;
} else {
uxCoreAffinityMask = (1 << xCoreID);
}
ret = xTaskCreateStaticAffinitySet(pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask);
}
#else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) ) */
{
ret = xTaskCreateStatic(pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer);
}
#endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUM_CORES > 1 ) ) */
return ret;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t xCoreID )
{
TaskHandle_t xTaskHandleTemp;
assert(xCoreID >= 0 && xCoreID < configNUM_CORES);
taskENTER_CRITICAL();
xTaskHandleTemp = (TaskHandle_t) pxCurrentTCBs[xCoreID];
taskEXIT_CRITICAL();
return xTaskHandleTemp;
}
TaskHandle_t xTaskGetIdleTaskHandleForCPU( BaseType_t xCoreID )
{
assert(xCoreID >= 0 && xCoreID < configNUM_CORES);
return (TaskHandle_t) xIdleTaskHandle[xCoreID];
}
BaseType_t xTaskGetAffinity( TaskHandle_t xTask )
{
taskENTER_CRITICAL();
UBaseType_t uxCoreAffinityMask;
#if ( configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
TCB_t *pxTCB = prvGetTCBFromHandle( xTask );
uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
#else
uxCoreAffinityMask = tskNO_AFFINITY;
#endif
taskEXIT_CRITICAL();
BaseType_t ret;
// If the task is not pinned to a particular core, treat it as tskNO_AFFINITY
if (uxCoreAffinityMask & (uxCoreAffinityMask - 1)) { // If more than one bit set
ret = tskNO_AFFINITY;
} else {
int index_plus_one = __builtin_ffs(uxCoreAffinityMask);
assert(index_plus_one >= 1);
ret = index_plus_one - 1;
}
return ret;
}
#if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue, TlsDeleteCallbackFunction_t pvDelCallback)
{
// Verify that the offsets of pvThreadLocalStoragePointers and pvDummy15 match.
// pvDummy15 is part of the StaticTask_t struct and is used to access the TLSPs
// while deletion.
_Static_assert(offsetof( StaticTask_t, pvDummy15 ) == offsetof( TCB_t, pvThreadLocalStoragePointers ), "Offset of pvDummy15 must match the offset of pvThreadLocalStoragePointers");
//Set the local storage pointer first
vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
//Set the deletion callback at an offset of configNUM_THREAD_LOCAL_STORAGE_POINTERS/2
vTaskSetThreadLocalStoragePointer( xTaskToSet, ( xIndex + ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ), pvDelCallback );
}
#endif // CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
#endif // CONFIG_FREERTOS_SMP
#if ( INCLUDE_vTaskPrioritySet == 1 )
void prvTaskPriorityRaise( prvTaskSavedPriority_t * pxSavedPriority, UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxPriorityUsedOnEntry;
configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
#if CONFIG_FREERTOS_SMP
taskENTER_CRITICAL();
#else
taskENTER_CRITICAL( &xKernelLock );
#endif
{
pxTCB = prvGetTCBFromHandle( NULL );
#if ( configUSE_MUTEXES == 1 )
{
pxSavedPriority->uxPriority = pxTCB->uxPriority;
pxSavedPriority->uxBasePriority = pxTCB->uxBasePriority;
/* If uxNewPriority < uxBasePriority, then there is nothing else to
* do, as uxBasePriority is always <= uxPriority. */
if( uxNewPriority > pxTCB->uxBasePriority )
{
pxTCB->uxBasePriority = uxNewPriority;
/* Remember the task's current priority before attempting to
* change it. If the task's current priority is changed, it must
* be done so before moving the task between task lists) in order
* for the taskRESET_READY_PRIORITY() macro to function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
if( uxNewPriority > pxTCB->uxPriority )
{
pxTCB->uxPriority = uxNewPriority;
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
prvAddTaskToReadyList( pxTCB );
}
}
}
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxSavedPriority->uxPriority = pxTCB->uxPriority;
if ( uxNewPriority > pxTCB->uxPriority)
{
vTaskPrioritySet( NULL, uxNewPriority );
}
}
#endif
}
#if CONFIG_FREERTOS_SMP
taskEXIT_CRITICAL();
#else
taskEXIT_CRITICAL( &xKernelLock );
#endif
}
void prvTaskPriorityRestore( prvTaskSavedPriority_t * pxSavedPriority )
{
TCB_t * pxTCB;
UBaseType_t uxNewPriority;
UBaseType_t uxPriorityUsedOnEntry;
UBaseType_t uxBasePriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
#if CONFIG_FREERTOS_SMP
taskENTER_CRITICAL();
#else
taskENTER_CRITICAL( &xKernelLock );
#endif
{
pxTCB = prvGetTCBFromHandle( NULL );
#if ( configUSE_MUTEXES == 1 )
{
/* If the saved uxBasePriority == the task's uxBasePriority, it means
* that prvTaskPriorityRaise() never raised the task's uxBasePriority.
* In that case, there is nothing else to do. */
if( pxSavedPriority->uxBasePriority != pxTCB->uxBasePriority )
{
uxBasePriorityUsedOnEntry = pxTCB->uxBasePriority;
pxTCB->uxBasePriority = pxSavedPriority->uxBasePriority;
/* Remember the task's current priority before attempting to
* change it. If the task's current priority is changed, it must
* be done so before moving the task between task lists in order
* for the taskRESET_READY_PRIORITY() macro to function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
/* Check if the task inherited a priority after prvTaskPriorityRaise().
* If this is the case, there is nothing else to do. The priority
* will be restored when the task disinherits its priority. */
if( pxTCB->uxPriority == uxBasePriorityUsedOnEntry )
{
if( pxTCB->uxMutexesHeld == 0 )
{
/* The task may have inherited a priority before prvTaskPriorityRaise()
* then disinherited a priority after prvTaskPriorityRaise().
* Thus we need set the uxPriority to the saved base priority
* so that the task's priority gets restored to the priority
* before any inheritance or raising. */
pxTCB->uxPriority = pxSavedPriority->uxBasePriority;
}
else
{
/* The task may have inherited a priority before prvTaskPriorityRaise()
* was called. Thus, we need to restore uxPriority to the
* "saved uxPriority" so that the task still retains that
* inherited priority. */
pxTCB->uxPriority = pxSavedPriority->uxPriority;
}
uxNewPriority = pxTCB->uxPriority;
if( uxNewPriority < uxPriorityUsedOnEntry )
{
/* Setting the priority of the running task down means
* there may now be another task of higher priority that
* is ready to execute. */
xYieldRequired = pdTRUE;
}
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
prvAddTaskToReadyList( pxTCB );
}
if( xYieldRequired != pdFALSE )
{
taskYIELD_IF_USING_PREEMPTION();
}
}
}
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
vTaskPrioritySet( NULL, pxSavedPriority->uxPriority );
}
#endif
}
#if CONFIG_FREERTOS_SMP
taskEXIT_CRITICAL();
#else
taskEXIT_CRITICAL( &xKernelLock );
#endif
}
#endif // ( INCLUDE_vTaskPrioritySet == 1 )