mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
fd3576eca6
Update ledc duty cycle value range in doxygen. Fix duty configuration error at 100% duty cycle for ESP32. Improve LEDC API doxygen. Closes https://github.com/espressif/esp-idf/pull/11516 Closes https://github.com/espressif/esp-idf/issues/12593 Closes https://github.com/espressif/esp-idf/issues/12083
1156 lines
48 KiB
C
1156 lines
48 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <string.h>
|
|
#include <esp_types.h>
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "esp_log.h"
|
|
#include "esp_check.h"
|
|
#include "soc/gpio_periph.h"
|
|
#include "soc/ledc_periph.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/ledc_hal.h"
|
|
#include "hal/gpio_hal.h"
|
|
#include "driver/ledc.h"
|
|
#include "esp_rom_gpio.h"
|
|
#include "esp_rom_sys.h"
|
|
#include "soc/clk_ctrl_os.h"
|
|
#include "soc/soc_memory_types.h"
|
|
|
|
static const char* LEDC_TAG = "ledc";
|
|
|
|
#define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
|
|
#define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
|
|
|
|
typedef struct {
|
|
ledc_mode_t speed_mode;
|
|
ledc_duty_direction_t direction;
|
|
uint32_t target_duty;
|
|
int cycle_num;
|
|
int scale;
|
|
ledc_fade_mode_t mode;
|
|
xSemaphoreHandle ledc_fade_sem;
|
|
xSemaphoreHandle ledc_fade_mux;
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
StaticQueue_t ledc_fade_sem_storage;
|
|
#endif
|
|
ledc_cb_t ledc_fade_callback;
|
|
void *cb_user_arg;
|
|
} ledc_fade_t;
|
|
|
|
typedef struct {
|
|
ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
|
|
} ledc_obj_t;
|
|
|
|
static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
|
|
static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
|
|
static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
|
|
static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
#define LEDC_VAL_NO_CHANGE (-1)
|
|
#define LEDC_STEP_NUM_MAX (1023)
|
|
#define LEDC_DUTY_DECIMAL_BIT_NUM (4)
|
|
#define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
|
|
#define LEDC_DUTY_NUM_MAX (LEDC_DUTY_NUM_LSCH0_V)
|
|
#define LEDC_DUTY_CYCLE_MAX (LEDC_DUTY_CYCLE_LSCH0_V)
|
|
#define LEDC_DUTY_SCALE_MAX (LEDC_DUTY_SCALE_LSCH0_V)
|
|
#define LEDC_HPOINT_VAL_MAX (LEDC_HPOINT_LSCH1_V)
|
|
#define DELAY_CLK8M_CLK_SWITCH (5)
|
|
#define SLOW_CLK_CYC_CALIBRATE (13)
|
|
#define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
|
|
#define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
|
|
#define DIM(array) (sizeof(array)/sizeof(*array))
|
|
#define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
|
|
|
|
static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
|
|
static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
|
|
static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
|
|
|
|
//This value will be calibrated when in use.
|
|
static uint32_t s_ledc_slow_clk_8M = 0;
|
|
|
|
static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
|
|
{
|
|
if (speed_mode == LEDC_LOW_SPEED_MODE) {
|
|
ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
|
|
}
|
|
}
|
|
|
|
static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
if (speed_mode == LEDC_LOW_SPEED_MODE) {
|
|
ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
|
|
}
|
|
}
|
|
|
|
//We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
|
|
static bool ledc_slow_clk_calibrate(void)
|
|
{
|
|
if (periph_rtc_dig_clk8m_enable()) {
|
|
s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
|
|
ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %d Hz", s_ledc_slow_clk_8M);
|
|
return true;
|
|
}
|
|
ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
|
|
return false;
|
|
}
|
|
|
|
static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
|
|
{
|
|
uint32_t src_clk_freq = 0;
|
|
if (clk_cfg == LEDC_USE_APB_CLK) {
|
|
src_clk_freq = LEDC_APB_CLK_HZ;
|
|
} else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
|
|
src_clk_freq = s_ledc_slow_clk_8M;
|
|
#if SOC_LEDC_SUPPORT_REF_TICK
|
|
} else if (clk_cfg == LEDC_USE_REF_TICK) {
|
|
src_clk_freq = LEDC_REF_CLK_HZ;
|
|
#endif
|
|
#if SOC_LEDC_SUPPORT_XTAL_CLOCK
|
|
} else if (clk_cfg == LEDC_USE_XTAL_CLK) {
|
|
src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
|
|
#endif
|
|
}
|
|
return src_clk_freq;
|
|
}
|
|
|
|
/* Retrieve the clock frequency for global clocks only */
|
|
static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
|
|
{
|
|
uint32_t src_clk_freq = 0;
|
|
|
|
switch (clk_cfg) {
|
|
case LEDC_SLOW_CLK_APB:
|
|
src_clk_freq = LEDC_APB_CLK_HZ;
|
|
break;
|
|
case LEDC_SLOW_CLK_RTC8M:
|
|
src_clk_freq = s_ledc_slow_clk_8M;
|
|
break;
|
|
#if SOC_LEDC_SUPPORT_XTAL_CLOCK
|
|
case LEDC_SLOW_CLK_XTAL:
|
|
src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return src_clk_freq;
|
|
}
|
|
|
|
|
|
static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
|
|
{
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
if (type == LEDC_INTR_FADE_END) {
|
|
ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
|
|
} else {
|
|
ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
|
|
}
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
|
|
{
|
|
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
|
|
if (fade) {
|
|
xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
|
|
ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
|
|
}
|
|
}
|
|
|
|
static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
|
|
{
|
|
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
|
|
if (fade) {
|
|
xSemaphoreGive(fade->ledc_fade_sem);
|
|
}
|
|
}
|
|
|
|
static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
|
|
{
|
|
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
|
|
if (fade) {
|
|
xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
|
|
}
|
|
}
|
|
|
|
static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
|
|
{
|
|
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
|
|
if (fade) {
|
|
xSemaphoreGive(fade->ledc_fade_mux);
|
|
}
|
|
}
|
|
|
|
static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
// The arguments are checked before internally calling this function.
|
|
uint32_t max_duty;
|
|
ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
|
|
return max_duty;
|
|
}
|
|
|
|
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
|
|
ledc_clk_src_t clk_src)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
|
|
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
|
|
/* Clock source can only be configured on boards which support timer-specific
|
|
* source clock. */
|
|
ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
|
|
#endif
|
|
ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
|
|
ledc_ls_timer_update(speed_mode, timer_sel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val, int duty_val,
|
|
ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
|
|
{
|
|
portENTER_CRITICAL_SAFE(&ledc_spinlock);
|
|
if (hpoint_val >= 0) {
|
|
ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
|
|
}
|
|
if (duty_val >= 0) {
|
|
ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
|
|
}
|
|
ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
|
|
ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
|
|
ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
|
|
ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
|
|
ledc_ls_channel_update(speed_mode, channel);
|
|
portEXIT_CRITICAL_SAFE(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
|
|
ledc_ls_channel_update(speed_mode, channel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
|
|
{
|
|
esp_err_t ret;
|
|
LEDC_ARG_CHECK(fn, "fn");
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
|
|
{
|
|
/**
|
|
* In order to find the right divisor, we need to divide the source clock
|
|
* frequency by the desired frequency. However, two things to note here:
|
|
* - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
|
|
* part. The higher bits represent the integer part, this is why we need
|
|
* to right shift the source frequency.
|
|
* - The `precision` parameter represents the granularity of the clock. It
|
|
* **must** be a power of 2. It means that the resulted divisor is
|
|
* a multiplier of `precision`.
|
|
*
|
|
* Let's take a concrete example, we need to generate a 5KHz clock out of
|
|
* a 80MHz clock (APB).
|
|
* If the precision is 1024 (10 bits), the resulted multiplier is:
|
|
* (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
|
|
* Let's ignore the fractional part to simplify the explanation, so we get
|
|
* a result of 15 (0xf).
|
|
* This can be interpreted as: every 15 "precision" ticks, the resulted
|
|
* clock will go high, where one precision tick is made out of 1024 source
|
|
* clock ticks.
|
|
* Thus, every `15 * 1024` source clock ticks, the resulted clock will go
|
|
* high.
|
|
*
|
|
* NOTE: We are also going to round up the value when necessary, thanks to:
|
|
* (freq_hz * precision) / 2
|
|
*/
|
|
return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
|
|
/ (freq_hz * precision);
|
|
}
|
|
|
|
static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
|
|
{
|
|
uint32_t div_param = 0;
|
|
uint32_t i = 0;
|
|
uint32_t clk_freq = 0;
|
|
/* This function will go through all the following clock sources to look
|
|
* for a valid divisor which generates the requested frequency. */
|
|
const ledc_slow_clk_sel_t glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
|
|
|
|
for (i = 0; i < DIM(glb_clks); i++) {
|
|
/* Before calculating the divisor, we need to have the RTC frequency.
|
|
* If it hasn't been mesured yet, try calibrating it now. */
|
|
if (glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
|
|
ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
|
|
continue;
|
|
}
|
|
|
|
clk_freq = ledc_get_glb_clk_freq(glb_clks[i]);
|
|
div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
|
|
|
|
/* If the divisor is valid, we can return this value. */
|
|
if (!LEDC_IS_DIV_INVALID(div_param)) {
|
|
*clk_target = glb_clks[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
return div_param;
|
|
|
|
}
|
|
|
|
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
|
|
static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
|
|
ledc_clk_src_t* clk_source)
|
|
{
|
|
uint32_t div_param = 0;
|
|
uint32_t i = 0;
|
|
|
|
/* Use an anonymous structure, only this function requires it.
|
|
* Get the list of the timer-specific clocks, try to find one for the reuested frequency. */
|
|
const struct { ledc_clk_src_t clk; uint32_t freq; } specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
|
|
|
|
for (i = 0; i < DIM(specific_clks); i++) {
|
|
div_param = ledc_calculate_divisor(specific_clks[i].freq, freq_hz, precision);
|
|
|
|
/* If the divisor is valid, we can return this value. */
|
|
if (!LEDC_IS_DIV_INVALID(div_param)) {
|
|
*clk_source = specific_clks[i].clk;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if SOC_LEDC_SUPPORT_HS_MODE
|
|
/* On board that support LEDC high-speed mode, APB clock becomes a timer-
|
|
* specific clock when in high speed mode. Check if it is necessary here
|
|
* to test APB. */
|
|
if (speed_mode == LEDC_HIGH_SPEED_MODE && i == DIM(specific_clks)) {
|
|
/* No divider was found yet, try with APB! */
|
|
div_param = ledc_calculate_divisor(LEDC_APB_CLK_HZ, freq_hz, precision);
|
|
|
|
if (!LEDC_IS_DIV_INVALID(div_param)) {
|
|
*clk_source = LEDC_APB_CLK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return div_param;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Try to find the clock with its divisor giving the frequency requested
|
|
* by the caller.
|
|
*/
|
|
static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
|
|
ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
|
|
{
|
|
uint32_t div_param = 0;
|
|
|
|
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
|
|
/* If the SoC presents timer-specific clock(s), try to achieve the given frequency
|
|
* thanks to it/them.
|
|
* clk_source parameter will returned by this function. */
|
|
div_param = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
|
|
|
|
if (!LEDC_IS_DIV_INVALID(div_param)) {
|
|
/* The dividor is valid, no need try any other clock, return directly. */
|
|
return div_param;
|
|
}
|
|
#endif
|
|
|
|
/* On ESP32, only low speed channel can use the global clocks. For other
|
|
* chips, there are no high speed channels. */
|
|
if (speed_mode == LEDC_LOW_SPEED_MODE) {
|
|
div_param = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
|
|
}
|
|
|
|
return div_param;
|
|
}
|
|
|
|
static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
|
|
{
|
|
/* Initialization required for preventing a compiler warning */
|
|
ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
|
|
|
|
switch (clk_cfg) {
|
|
case LEDC_USE_APB_CLK:
|
|
glb_clk = LEDC_SLOW_CLK_APB;
|
|
break;
|
|
case LEDC_USE_RTC8M_CLK:
|
|
glb_clk = LEDC_SLOW_CLK_RTC8M;
|
|
break;
|
|
#if SOC_LEDC_SUPPORT_XTAL_CLOCK
|
|
case LEDC_USE_XTAL_CLK:
|
|
glb_clk = LEDC_SLOW_CLK_XTAL;
|
|
break;
|
|
#endif
|
|
#if SOC_LEDC_SUPPORT_REF_TICK
|
|
case LEDC_USE_REF_TICK:
|
|
#endif
|
|
default:
|
|
/* We should not get here, REF_TICK is NOT a global clock,
|
|
* it is a timer-specific clock. */
|
|
assert(false);
|
|
}
|
|
|
|
return glb_clk;
|
|
}
|
|
|
|
extern void esp_sleep_periph_use_8m(bool use_or_not);
|
|
|
|
/**
|
|
* @brief Function setting the LEDC timer divisor with the given source clock,
|
|
* frequency and resolution. If the clock configuration passed is
|
|
* LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
|
|
*/
|
|
static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
|
|
{
|
|
uint32_t div_param = 0;
|
|
const uint32_t precision = ( 0x1 << duty_resolution );
|
|
/* This variable represents the timer's mux value. It will be overwritten
|
|
* if a timer-specific clock is used. */
|
|
ledc_clk_src_t timer_clk_src = LEDC_SCLK;
|
|
/* Store the global clock. */
|
|
ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
|
|
uint32_t src_clk_freq = 0;
|
|
|
|
if (clk_cfg == LEDC_AUTO_CLK) {
|
|
/* User hasn't specified the speed, we should try to guess it. */
|
|
div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
|
|
|
|
} else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
|
|
/* User specified source clock(RTC8M_CLK) for low speed channel.
|
|
* Make sure the speed mode is correct. */
|
|
ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
|
|
|
|
/* Before calculating the divisor, we need to have the RTC frequency.
|
|
* If it hasn't been mesured yet, try calibrating it now. */
|
|
if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
|
|
goto error;
|
|
}
|
|
|
|
/* We have the RTC clock frequency now. */
|
|
div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
|
|
|
|
/* Set the global clock source */
|
|
glb_clk = LEDC_SLOW_CLK_RTC8M;
|
|
|
|
} else {
|
|
|
|
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
|
|
if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
|
|
/* Currently we can convert a timer-specific clock to a source clock that
|
|
* easily because their values are identical in the enumerations (on purpose)
|
|
* If we decide to change the values in the future, we should consider defining
|
|
* a macro/function to convert timer-specific clock to clock source .*/
|
|
timer_clk_src = (ledc_clk_src_t) clk_cfg;
|
|
} else
|
|
#endif
|
|
{
|
|
glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
|
|
}
|
|
|
|
src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
|
|
div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
|
|
}
|
|
|
|
if (LEDC_IS_DIV_INVALID(div_param)) {
|
|
goto error;
|
|
}
|
|
|
|
/* The following debug message makes more sense for AUTO mode. */
|
|
ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%x\n",
|
|
timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
|
|
|
|
/* The following block configures the global clock.
|
|
* Thus, in theory, this only makes sense when the source clock is LEDC_SCLK
|
|
* and in LOW_SPEED_MODE (as FAST_SPEED_MODE doesn't present any global clock)
|
|
*
|
|
* However, in practice, on modules that support high-speed mode, no matter
|
|
* whether the source clock is a timer-specific one (e.g. REF_TICK) or not,
|
|
* the global clock MUST be configured when in low speed mode.
|
|
* When using high-speed mode, this is not necessary.
|
|
*/
|
|
#if SOC_LEDC_SUPPORT_HS_MODE
|
|
if (speed_mode == LEDC_LOW_SPEED_MODE) {
|
|
#else
|
|
if (timer_clk_src == LEDC_SCLK) {
|
|
#endif
|
|
ESP_LOGD(LEDC_TAG, "In slow speed mode, using clock %d", glb_clk);
|
|
|
|
/* keep ESP_PD_DOMAIN_RTC8M on during light sleep */
|
|
esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RTC8M);
|
|
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
}
|
|
|
|
/* The divisor is correct, we can write in the hardware. */
|
|
ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
|
|
return ESP_OK;
|
|
error:
|
|
ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%d",
|
|
(uint32_t ) div_param);
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
esp_err_t ledc_timer_config(const ledc_timer_config_t* timer_conf)
|
|
{
|
|
LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
|
|
uint32_t freq_hz = timer_conf->freq_hz;
|
|
uint32_t duty_resolution = timer_conf->duty_resolution;
|
|
uint32_t timer_num = timer_conf->timer_num;
|
|
uint32_t speed_mode = timer_conf->speed_mode;
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
|
|
periph_module_enable(PERIPH_LEDC_MODULE);
|
|
if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
|
|
ESP_LOGE(LEDC_TAG, "freq_hz=%u duty_resolution=%u", freq_hz, duty_resolution);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (timer_num > LEDC_TIMER_3) {
|
|
ESP_LOGE(LEDC_TAG, "invalid timer #%u", timer_num);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if(p_ledc_obj[speed_mode] == NULL) {
|
|
p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
if (p_ledc_obj[speed_mode] == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
|
|
}
|
|
|
|
esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
|
|
if (ret == ESP_OK) {
|
|
/* Reset the timer. */
|
|
ledc_timer_rst(speed_mode, timer_num);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
|
|
{
|
|
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
|
|
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
|
|
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_channel_config(const ledc_channel_config_t* ledc_conf)
|
|
{
|
|
LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
|
|
uint32_t speed_mode = ledc_conf->speed_mode;
|
|
uint32_t gpio_num = ledc_conf->gpio_num;
|
|
uint32_t ledc_channel = ledc_conf->channel;
|
|
uint32_t timer_select = ledc_conf->timer_sel;
|
|
uint32_t intr_type = ledc_conf->intr_type;
|
|
uint32_t duty = ledc_conf->duty;
|
|
uint32_t hpoint = ledc_conf->hpoint;
|
|
bool output_invert = ledc_conf->flags.output_invert;
|
|
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
|
|
LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
|
|
LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
|
|
|
|
periph_module_enable(PERIPH_LEDC_MODULE);
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if(p_ledc_obj[speed_mode] == NULL) {
|
|
p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
if (p_ledc_obj[speed_mode] == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
|
|
}
|
|
|
|
/*set channel parameters*/
|
|
/* channel parameters decide how the waveform looks like in one period */
|
|
/* set channel duty and hpoint value, duty range is [0, (2**duty_res)], hpoint range is [0, (2**duty_res)-1] */
|
|
/* Note: On ESP32, ESP32S2, ESP32S3, ESP32C3 due to a hardware bug,
|
|
* 100% duty cycle (i.e. 2**duty_res) is not reachable when the binded timer selects the maximum duty
|
|
* resolution. For example, the max duty resolution on ESP32C3 is 14-bit width, then set duty to (2**14)
|
|
* will mess up the duty calculation in hardware.
|
|
*/
|
|
ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
|
|
/*update duty settings*/
|
|
ledc_update_duty(speed_mode, ledc_channel);
|
|
/*bind the channel with the timer*/
|
|
ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
|
|
/*set interrupt type*/
|
|
ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
|
|
ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u",
|
|
ledc_channel, gpio_num, duty, timer_select
|
|
);
|
|
/*set LEDC signal in gpio matrix*/
|
|
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
|
|
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
|
|
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
|
|
ledc_ls_channel_update(speed_mode, channel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
|
|
ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
|
|
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
|
|
ledc_ls_channel_update(speed_mode, channel);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
|
|
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
|
|
LEDC_ARG_CHECK(step_num <= LEDC_DUTY_NUM_MAX, "step_num");
|
|
LEDC_ARG_CHECK(duty_cyle_num <= LEDC_DUTY_CYCLE_MAX, "duty_cycle_num");
|
|
LEDC_ARG_CHECK(duty_scale <= LEDC_DUTY_SCALE_MAX, "duty_scale");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
ledc_duty_config(speed_mode,
|
|
channel, //uint32_t chan_num,
|
|
LEDC_VAL_NO_CHANGE,
|
|
duty, //uint32_t duty_val,
|
|
fade_direction, //uint32_t increase,
|
|
step_num, //uint32_t duty_num,
|
|
duty_cyle_num, //uint32_t duty_cycle,
|
|
duty_scale //uint32_t duty_scale
|
|
);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
/* The channel configuration should not be changed before the fade operation is done. */
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
ledc_duty_config(speed_mode,
|
|
channel, //uint32_t chan_num,
|
|
hpoint, //uint32_t hpoint_val,
|
|
duty, //uint32_t duty_val,
|
|
1, //uint32_t increase,
|
|
0, //uint32_t duty_num,
|
|
0, //uint32_t duty_cycle,
|
|
0 //uint32_t duty_scale
|
|
);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
/* The channel configuration should not be changed before the fade operation is done. */
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
ledc_duty_config(speed_mode,
|
|
channel, //uint32_t chan_num,
|
|
LEDC_VAL_NO_CHANGE,
|
|
duty, //uint32_t duty_val,
|
|
1, //uint32_t increase,
|
|
0, //uint32_t duty_num,
|
|
0, //uint32_t duty_cycle,
|
|
0 //uint32_t duty_scale
|
|
);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
uint32_t duty = 0;
|
|
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
|
|
return duty;
|
|
}
|
|
|
|
int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
|
|
LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
uint32_t hpoint = 0;
|
|
ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
|
|
return hpoint;
|
|
}
|
|
|
|
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
|
|
uint32_t duty_resolution = 0;
|
|
ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
|
|
ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
|
|
return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
|
|
}
|
|
|
|
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
uint32_t clock_divider = 0;
|
|
uint32_t duty_resolution = 0;
|
|
ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
|
|
ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
|
|
ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
|
|
ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
|
|
uint32_t precision = (0x1 << duty_resolution);
|
|
uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
|
|
}
|
|
|
|
static inline void ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
|
|
{
|
|
uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
|
|
(*fade_end_status) &= ~(1 << i);
|
|
*channel = i;
|
|
}
|
|
|
|
static void IRAM_ATTR ledc_fade_isr(void* arg)
|
|
{
|
|
bool cb_yield = false;
|
|
portBASE_TYPE HPTaskAwoken = pdFALSE;
|
|
uint32_t speed_mode = 0;
|
|
uint32_t channel = 0;
|
|
uint32_t intr_status = 0;
|
|
|
|
for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
|
|
if (p_ledc_obj[speed_mode] == NULL) {
|
|
continue;
|
|
}
|
|
ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
|
|
while(intr_status) {
|
|
ledc_calc_fade_end_channel(&intr_status, &channel);
|
|
|
|
// clear interrupt
|
|
portENTER_CRITICAL_ISR(&ledc_spinlock);
|
|
ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
|
|
portEXIT_CRITICAL_ISR(&ledc_spinlock);
|
|
|
|
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
|
|
//fade object not initialized yet.
|
|
continue;
|
|
}
|
|
|
|
uint32_t duty_cur = 0;
|
|
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
|
|
uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
|
|
int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
|
|
if (duty_cur == duty_tar || scale == 0) {
|
|
xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
|
|
|
|
ledc_cb_param_t param = {
|
|
.event = LEDC_FADE_END_EVT,
|
|
.speed_mode = speed_mode,
|
|
.channel = channel,
|
|
.duty = duty_cur
|
|
};
|
|
ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
|
|
if (fade_cb) {
|
|
cb_yield |= fade_cb(¶m, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
|
|
}
|
|
continue;
|
|
}
|
|
int cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
|
|
int delta = s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE ? duty_cur - duty_tar : duty_tar - duty_cur;
|
|
int step = delta / scale > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : delta / scale;
|
|
if (delta > scale) {
|
|
ledc_duty_config(
|
|
speed_mode,
|
|
channel,
|
|
LEDC_VAL_NO_CHANGE,
|
|
duty_cur,
|
|
s_ledc_fade_rec[speed_mode][channel]->direction,
|
|
step,
|
|
cycle,
|
|
scale);
|
|
} else {
|
|
ledc_duty_config(
|
|
speed_mode,
|
|
channel,
|
|
LEDC_VAL_NO_CHANGE,
|
|
duty_tar,
|
|
s_ledc_fade_rec[speed_mode][channel]->direction,
|
|
1,
|
|
1,
|
|
0);
|
|
}
|
|
portENTER_CRITICAL_ISR(&ledc_spinlock);
|
|
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
|
|
portEXIT_CRITICAL_ISR(&ledc_spinlock);
|
|
}
|
|
}
|
|
if (HPTaskAwoken == pdTRUE || cb_yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
if (s_ledc_fade_rec[speed_mode][channel]) {
|
|
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
|
|
vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
|
|
}
|
|
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
|
|
vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
|
|
}
|
|
free(s_ledc_fade_rec[speed_mode][channel]);
|
|
s_ledc_fade_rec[speed_mode][channel] = NULL;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
|
|
{
|
|
if (s_ledc_fade_isr_handle == NULL) {
|
|
ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
|
|
return ESP_FAIL;
|
|
}
|
|
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
if (!s_ledc_fade_rec[speed_mode][channel]) {
|
|
ledc_fade_channel_deinit(speed_mode, channel);
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
|
|
#else
|
|
s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
|
|
#endif
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
|
|
xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
|
|
}
|
|
if (s_ledc_fade_rec[speed_mode][channel]
|
|
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
|
|
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
|
|
return ESP_OK;
|
|
} else {
|
|
ledc_fade_channel_deinit(speed_mode, channel);
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
|
|
static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
|
|
{
|
|
portENTER_CRITICAL(&ledc_spinlock);
|
|
uint32_t duty_cur = 0;
|
|
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
|
|
// When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
|
|
if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
|
|
duty_cur -= 1;
|
|
}
|
|
s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
|
|
s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
|
|
s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
|
|
s_ledc_fade_rec[speed_mode][channel]->scale = scale;
|
|
int step_num = 0;
|
|
int dir = LEDC_DUTY_DIR_DECREASE;
|
|
if (scale > 0) {
|
|
if (duty_cur > target_duty) {
|
|
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
|
|
step_num = (duty_cur - target_duty) / scale;
|
|
step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
|
|
} else {
|
|
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
|
|
dir = LEDC_DUTY_DIR_INCREASE;
|
|
step_num = (target_duty - duty_cur) / scale;
|
|
step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
|
|
}
|
|
}
|
|
|
|
portEXIT_CRITICAL(&ledc_spinlock);
|
|
if (scale > 0 && step_num > 0) {
|
|
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
|
|
ESP_LOGD(LEDC_TAG, "cur duty: %d; target: %d, step: %d, cycle: %d; scale: %d; dir: %d\n",
|
|
duty_cur, target_duty, step_num, cycle_num, scale, dir);
|
|
} else {
|
|
// Directly set duty to the target, does not care on the dir
|
|
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, 1, 0, 1, 0);
|
|
ESP_LOGD(LEDC_TAG, "Set to target duty: %d", target_duty);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
|
|
{
|
|
ledc_timer_t timer_sel;
|
|
uint32_t duty_cur = 0;
|
|
ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
|
|
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
|
|
uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
|
|
uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
|
|
|
|
if (duty_delta == 0) {
|
|
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
|
|
}
|
|
uint32_t total_cycles = max_fade_time_ms * freq / 1000;
|
|
if (total_cycles == 0) {
|
|
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
|
|
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
|
|
}
|
|
int scale, cycle_num;
|
|
if (total_cycles > duty_delta) {
|
|
scale = 1;
|
|
cycle_num = total_cycles / duty_delta;
|
|
if (cycle_num > LEDC_DUTY_NUM_MAX) {
|
|
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
|
|
cycle_num = LEDC_DUTY_NUM_MAX;
|
|
}
|
|
} else {
|
|
cycle_num = 1;
|
|
scale = duty_delta / total_cycles;
|
|
if (scale > LEDC_DUTY_SCALE_MAX) {
|
|
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
|
|
scale = LEDC_DUTY_SCALE_MAX;
|
|
}
|
|
}
|
|
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
|
|
}
|
|
|
|
static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
|
|
{
|
|
s_ledc_fade_rec[speed_mode][channel]->mode = fade_mode;
|
|
// Clear interrupt status of channel
|
|
ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
|
|
// Enable interrupt for channel
|
|
ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
|
|
ledc_update_duty(speed_mode, channel);
|
|
if (fade_mode == LEDC_FADE_WAIT_DONE) {
|
|
// Waiting for fade done
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
// Release hardware to support next time fade configure
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
}
|
|
}
|
|
|
|
esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
|
|
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
|
|
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
|
|
{
|
|
LEDC_CHECK(s_ledc_fade_rec != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
_ledc_fade_start(speed_mode, channel, fade_mode);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_fade_func_install(int intr_alloc_flags)
|
|
{
|
|
LEDC_CHECK(s_ledc_fade_isr_handle == NULL, "fade function already installed", ESP_ERR_INVALID_STATE);
|
|
//OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
|
|
return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
|
|
}
|
|
|
|
void ledc_fade_func_uninstall(void)
|
|
{
|
|
if (s_ledc_fade_rec == NULL) {
|
|
return;
|
|
}
|
|
if (s_ledc_fade_isr_handle) {
|
|
esp_intr_free(s_ledc_fade_isr_handle);
|
|
s_ledc_fade_isr_handle = NULL;
|
|
}
|
|
int channel, mode;
|
|
for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
|
|
for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
|
|
ledc_fade_channel_deinit(mode, channel);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(cbs, "callback");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
if (cbs->fade_cb && !esp_ptr_in_iram(cbs->fade_cb)) {
|
|
ESP_LOGW(LEDC_TAG, "fade callback not in IRAM");
|
|
}
|
|
if (user_arg && !esp_ptr_internal(user_arg)) {
|
|
ESP_LOGW(LEDC_TAG, "user context not in internal RAM");
|
|
}
|
|
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
|
|
s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*
|
|
* The functions below are thread-safe version of APIs for duty and fade control.
|
|
* These APIs can be called from different tasks.
|
|
*/
|
|
esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
|
|
LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 0, 0, 0);
|
|
ledc_update_duty(speed_mode, channel);
|
|
_ledc_fade_hw_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
|
|
_ledc_op_lock_acquire(speed_mode, channel);
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
|
|
_ledc_fade_start(speed_mode, channel, fade_mode);
|
|
_ledc_op_lock_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
|
|
{
|
|
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
|
|
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
|
|
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
|
|
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
|
|
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
|
|
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
|
|
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
|
|
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
|
|
_ledc_op_lock_acquire(speed_mode, channel);
|
|
_ledc_fade_hw_acquire(speed_mode, channel);
|
|
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
|
|
_ledc_fade_start(speed_mode, channel, fade_mode);
|
|
_ledc_op_lock_release(speed_mode, channel);
|
|
return ESP_OK;
|
|
}
|