esp-idf/components/esp_system/port/arch/xtensa/panic_arch.c
Darian Leung a5d5ee7445 change(xtensa): Deprecate ".../xtensa_context.h" include path
This commit deprecates the "freertos/xtensa_context.h" and "xtensa/xtensa_context.h"
include paths. Users should use "xtensa_context.h" instead.

- Replace legacy include paths
- Removed some unnecessary includes of "xtensa_api.h"
- Add warning to compatibility header
2023-11-30 21:58:52 +08:00

472 lines
16 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "xtensa_context.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_debug_helpers.h"
#include "esp_private/panic_internal.h"
#include "esp_private/panic_reason.h"
#include "soc/soc.h"
#include "esp_private/cache_err_int.h"
#include "sdkconfig.h"
#if !CONFIG_IDF_TARGET_ESP32
#include "soc/extmem_reg.h"
#include "soc/ext_mem_defs.h"
#include "soc/rtc_cntl_reg.h"
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
#ifdef CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/memprot.h"
#else
#include "esp_memprot.h"
#endif
#endif
#endif // CONFIG_IDF_TARGET_ESP32
void panic_print_registers(const void *f, int core)
{
XtExcFrame *frame = (XtExcFrame *) f;
int *regs = (int *)frame;
(void)regs;
const char *sdesc[] = {
"PC ", "PS ", "A0 ", "A1 ", "A2 ", "A3 ", "A4 ", "A5 ",
"A6 ", "A7 ", "A8 ", "A9 ", "A10 ", "A11 ", "A12 ", "A13 ",
"A14 ", "A15 ", "SAR ", "EXCCAUSE", "EXCVADDR", "LBEG ", "LEND ", "LCOUNT "
};
/* only dump registers for 'real' crashes, if crashing via abort()
the register window is no longer useful.
*/
panic_print_str("Core ");
panic_print_dec(core);
panic_print_str(" register dump:");
for (int x = 0; x < 24; x += 4) {
panic_print_str("\r\n");
for (int y = 0; y < 4; y++) {
if (sdesc[x + y][0] != 0) {
panic_print_str(sdesc[x + y]);
panic_print_str(": 0x");
panic_print_hex(regs[x + y + 1]);
panic_print_str(" ");
}
}
}
// If the core which triggers the interrupt watchpoint was in ISR context, dump the epc registers.
if (xPortInterruptedFromISRContext()
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
&& ((core == 0 && frame->exccause == PANIC_RSN_INTWDT_CPU0) ||
(core == 1 && frame->exccause == PANIC_RSN_INTWDT_CPU1))
#endif //!CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
) {
panic_print_str("\r\n");
uint32_t __value;
panic_print_str("Core ");
panic_print_dec(core);
panic_print_str(" was running in ISR context:\r\n");
__asm__("rsr.epc1 %0" : "=a"(__value));
panic_print_str("EPC1 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc2 %0" : "=a"(__value));
panic_print_str(" EPC2 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc3 %0" : "=a"(__value));
panic_print_str(" EPC3 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc4 %0" : "=a"(__value));
panic_print_str(" EPC4 : 0x");
panic_print_hex(__value);
}
}
static void print_illegal_instruction_details(const void *f)
{
XtExcFrame *frame = (XtExcFrame *) f;
/* Print out memory around the instruction word */
uint32_t epc = frame->pc;
epc = (epc & ~0x3) - 4;
/* check that the address was sane */
if (epc < SOC_IROM_MASK_LOW || epc >= SOC_IROM_HIGH) {
return;
}
volatile uint32_t *pepc = (uint32_t *)epc;
(void)pepc;
panic_print_str("Memory dump at 0x");
panic_print_hex(epc);
panic_print_str(": ");
panic_print_hex(*pepc);
panic_print_str(" ");
panic_print_hex(*(pepc + 1));
panic_print_str(" ");
panic_print_hex(*(pepc + 2));
}
static void print_debug_exception_details(const void *f)
{
int debug_rsn;
asm("rsr.debugcause %0":"=r"(debug_rsn));
panic_print_str("Debug exception reason: ");
if (debug_rsn & XCHAL_DEBUGCAUSE_ICOUNT_MASK) {
panic_print_str("SingleStep ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_IBREAK_MASK) {
panic_print_str("HwBreakpoint ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_DBREAK_MASK) {
//Unlike what the ISA manual says, this core seemingly distinguishes from a DBREAK
//reason caused by watchdog 0 and one caused by watchdog 1 by setting bit 8 of the
//debugcause if the cause is watchpoint 1 and clearing it if it's watchpoint 0.
if (debug_rsn & (1 << 8)) {
#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
int core = 0;
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
if (f == g_exc_frames[1]) {
core = 1;
}
#endif
const char *name = pcTaskGetName(xTaskGetCurrentTaskHandleForCore(core));
panic_print_str("Stack canary watchpoint triggered (");
panic_print_str(name);
panic_print_str(") ");
#else
panic_print_str("Watchpoint 1 triggered ");
#endif
} else {
panic_print_str("Watchpoint 0 triggered ");
}
}
if (debug_rsn & XCHAL_DEBUGCAUSE_BREAK_MASK) {
panic_print_str("BREAK instr ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_BREAKN_MASK) {
panic_print_str("BREAKN instr ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_DEBUGINT_MASK) {
panic_print_str("DebugIntr ");
}
}
#if CONFIG_IDF_TARGET_ESP32S2
static inline void print_cache_err_details(const void *f)
{
uint32_t vaddr = 0, size = 0;
uint32_t status[2];
status[0] = REG_READ(EXTMEM_CACHE_DBG_STATUS0_REG);
status[1] = REG_READ(EXTMEM_CACHE_DBG_STATUS1_REG);
for (int i = 0; i < 32; i++) {
switch (status[0] & BIT(i)) {
case EXTMEM_IC_SYNC_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC0_REG);
size = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC1_REG);
panic_print_str("Icache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_IC_PRELOAD_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_SIZE_REG);
panic_print_str("Icache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_ICACHE_REJECT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_REJECT_VADDR_REG);
panic_print_str("Icache reject error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
default:
break;
}
switch (status[1] & BIT(i)) {
case EXTMEM_DC_SYNC_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC0_REG);
size = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC1_REG);
panic_print_str("Dcache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DC_PRELOAD_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_SIZE_REG);
panic_print_str("Dcache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DCACHE_WRITE_FLASH_ST:
panic_print_str("Write back error occurred while dcache tries to write back to flash\r\n");
break;
case EXTMEM_DCACHE_REJECT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_REJECT_VADDR_REG);
panic_print_str("Dcache reject error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
case EXTMEM_MMU_ENTRY_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_VADDR_REG);
panic_print_str("MMU entry fault error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
default:
break;
}
}
}
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
#define MEMPROT_OP_INVALID 0xFFFFFFFF
static inline void print_memprot_err_details(const void *f)
{
uint32_t *fault_addr;
uint32_t op_type = MEMPROT_OP_INVALID, op_subtype;
const char *operation_type;
mem_type_prot_t mem_type = esp_memprot_get_active_intr_memtype();
if (mem_type != MEMPROT_NONE) {
if (esp_memprot_get_fault_status(mem_type, &fault_addr, &op_type, &op_subtype) != ESP_OK) {
op_type = MEMPROT_OP_INVALID;
}
}
if (op_type == MEMPROT_OP_INVALID) {
operation_type = "Unknown";
fault_addr = (uint32_t *)MEMPROT_OP_INVALID;
} else {
if (op_type == 0) {
operation_type = (mem_type == MEMPROT_IRAM0_SRAM && op_subtype == 0) ? "Instruction fetch" : "Read";
} else {
operation_type = "Write";
}
}
panic_print_str(operation_type);
panic_print_str(" operation at address 0x");
panic_print_hex((uint32_t)fault_addr);
panic_print_str(" not permitted (");
panic_print_str(esp_memprot_type_to_str(mem_type));
panic_print_str(")\r\n");
}
#endif
#elif CONFIG_IDF_TARGET_ESP32S3
static inline void print_cache_err_details(const void *f)
{
uint32_t vaddr = 0, size = 0;
uint32_t status;
status = REG_READ(EXTMEM_CACHE_ILG_INT_ST_REG);
for (int i = 0; i < 32; i++) {
switch (status & BIT(i)) {
case EXTMEM_ICACHE_SYNC_OP_FAULT_ST:
//TODO, which size should fetch
//vaddr = REG_READ(EXTMEM_ICACHE_MEM_SYNC0_REG);
//size = REG_READ(EXTMEM_ICACHE_MEM_SYNC1_REG);
panic_print_str("Icache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_ICACHE_PRELOAD_OP_FAULT_ST:
//TODO, which size should fetch
vaddr = REG_READ(EXTMEM_ICACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_ICACHE_PRELOAD_SIZE_REG);
panic_print_str("Icache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DCACHE_SYNC_OP_FAULT_ST:
//TODO, which size should fetch
//vaddr = REG_READ(EXTMEM_DCACHE_MEM_SYNC0_REG);
//size = REG_READ(EXTMEM_DCACHE_MEM_SYNC1_REG);
panic_print_str("Dcache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DCACHE_PRELOAD_OP_FAULT_ST:
//TODO, which size should fetch
vaddr = REG_READ(EXTMEM_DCACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_DCACHE_PRELOAD_SIZE_REG);
panic_print_str("Dcache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DCACHE_WRITE_FLASH_ST:
panic_print_str("Write back error occurred while dcache tries to write back to flash\r\n");
break;
case EXTMEM_MMU_ENTRY_FAULT_ST:
vaddr = REG_READ(EXTMEM_CACHE_MMU_FAULT_VADDR_REG);
panic_print_str("MMU entry fault error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
default:
break;
}
}
panic_print_str("\r\n");
}
#endif
void panic_arch_fill_info(void *f, panic_info_t *info)
{
XtExcFrame *frame = (XtExcFrame *) f;
static const char *reason[] = {
"IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError",
"Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue",
"Privileged", "LoadStoreAlignment", "res", "res",
"InstrPDAddrError", "LoadStorePIFDataError", "InstrPIFAddrError", "LoadStorePIFAddrError",
"InstTLBMiss", "InstTLBMultiHit", "InstFetchPrivilege", "res",
"InstrFetchProhibited", "res", "res", "res",
"LoadStoreTLBMiss", "LoadStoreTLBMultihit", "LoadStorePrivilege", "res",
"LoadProhibited", "StoreProhibited", "res", "res",
"Cp0Dis", "Cp1Dis", "Cp2Dis", "Cp3Dis",
"Cp4Dis", "Cp5Dis", "Cp6Dis", "Cp7Dis"
};
if (frame->exccause < (sizeof(reason) / sizeof(char *))) {
info->reason = (reason[frame->exccause]);
} else {
info->reason = "Unknown";
}
info->description = "Exception was unhandled.";
if (frame->exccause == EXCCAUSE_ILLEGAL) {
info->details = print_illegal_instruction_details;
}
info->addr = ((void *) ((XtExcFrame *) frame)->pc);
}
void panic_soc_fill_info(void *f, panic_info_t *info)
{
// [refactor-todo] this should be in the common port panic_handler.c, once
// these special exceptions are supported in there.
XtExcFrame *frame = (XtExcFrame *) f;
if (frame->exccause == PANIC_RSN_INTWDT_CPU0) {
info->core = 0;
info->exception = PANIC_EXCEPTION_IWDT;
} else if (frame->exccause == PANIC_RSN_INTWDT_CPU1) {
info->core = 1;
info->exception = PANIC_EXCEPTION_IWDT;
} else if (frame->exccause == PANIC_RSN_CACHEERR) {
info->core = esp_cache_err_get_cpuid();
} else {}
//Please keep in sync with PANIC_RSN_* defines
static const char *pseudo_reason[] = {
"Unknown reason",
"Unhandled debug exception",
"Double exception",
"Unhandled kernel exception",
"Coprocessor exception",
"Interrupt wdt timeout on CPU0",
"Interrupt wdt timeout on CPU1",
"Cache disabled but cached memory region accessed",
};
info->reason = pseudo_reason[0];
info->description = NULL;
if (frame->exccause <= PANIC_RSN_MAX) {
info->reason = pseudo_reason[frame->exccause];
}
if (frame->exccause == PANIC_RSN_DEBUGEXCEPTION) {
info->details = print_debug_exception_details;
info->exception = PANIC_EXCEPTION_DEBUG;
}
//MV note: ESP32S3 PMS handling?
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
if (frame->exccause == PANIC_RSN_CACHEERR) {
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && CONFIG_IDF_TARGET_ESP32S2
if ( esp_memprot_is_intr_ena_any() ) {
info->details = print_memprot_err_details;
info->reason = "Memory protection fault";
} else
#endif
{
info->details = print_cache_err_details;
}
}
#endif
}
uint32_t panic_get_address(const void *f)
{
return ((XtExcFrame *)f)->pc;
}
uint32_t panic_get_cause(const void *f)
{
return ((XtExcFrame *)f)->exccause;
}
void panic_set_address(void *f, uint32_t addr)
{
((XtExcFrame *)f)->pc = addr;
}
void panic_print_backtrace(const void *f, int core)
{
XtExcFrame *xt_frame = (XtExcFrame *) f;
esp_backtrace_frame_t frame = {.pc = xt_frame->pc, .sp = xt_frame->a1, .next_pc = xt_frame->a0, .exc_frame = xt_frame};
esp_backtrace_print_from_frame(100, &frame, true);
}