esp-idf/components/esp_mm/esp_mmu_map.c
Mahavir Jain deab1da6f2 fix(esp_mm): for existing mmap region, consider new offset for virtual addr
While returning virtual address for existing memory mapped region, newly
supplied offset from the physical address was not getting considered.

This was a regression present from ESP-IDF 5.1 release.

Added test case in spi_flash component that fails without this fix.

Closes https://github.com/espressif/esp-idf/issues/13929
2024-07-15 12:42:45 +08:00

839 lines
32 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_heap_caps.h"
#include "soc/soc_caps.h"
#include "hal/cache_types.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#include "hal/mmu_types.h"
#include "hal/mmu_hal.h"
#include "hal/mmu_ll.h"
#include "esp_private/cache_utils.h"
#include "esp_private/esp_cache_esp32_private.h"
#include "esp_private/esp_mmu_map_private.h"
#include "ext_mem_layout.h"
#include "esp_mmu_map.h"
//This is for size align
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
//This is for vaddr align
#define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
//This flag indicates the memory region is merged, we don't care about it anymore
#define MEM_REGION_MERGED -1
/**
* We have some hw related tests for vaddr region capabilites
* Use this macro to disable paddr check as we need to reuse certain paddr blocks
*/
#define ENABLE_PADDR_CHECK !ESP_MMAP_TEST_ALLOW_MAP_TO_MAPPED_PADDR
static DRAM_ATTR const char *TAG = "mmap";
/**
* @brief MMU Memory Mapping Driver
*
* Driver Backgrounds:
*
* --------------------------------------------------------------------------------------------------------
* Memory Pool |
* --------------------------------------------------------------------------------------------------------
* | Memory Region 0 | Memory Region 1 | ... |
* --------------------------------------------------------------------------------------------------------
* | Block 0 | Slot 0 | Block 1 | Block 2 | ... | Slot 1 (final slot) | ... |
* --------------------------------------------------------------------------------------------------------
*
* - A block is a piece of vaddr range that is dynamically mapped. Blocks are doubly linked:
* Block 0 <-> Block 1 <-> Block 2
* - A Slot is the vaddr range between 2 blocks.
*/
/**
* Struct for a block
*/
typedef struct mem_block_ {
uint32_t laddr_start; //linear address start of this block
uint32_t laddr_end; //linear address end of this block
intptr_t vaddr_start; //virtual address start of this block
intptr_t vaddr_end; //virtual address end of this block
size_t size; //size of this block, should be aligned to MMU page size
int caps; //caps of this block, `mmu_mem_caps_t`
uint32_t paddr_start; //physical address start of this block
uint32_t paddr_end; //physical address end of this block
mmu_target_t target; //physical target that this block is mapped to
TAILQ_ENTRY(mem_block_) entries; //link entry
} mem_block_t;
/**
* Struct for a memory region
*/
typedef struct mem_region_ {
cache_bus_mask_t bus_id; //cache bus mask of this region
uint32_t start; //linear address start of this region
uint32_t end; //linear address end of this region
size_t region_size; //region size, in bytes
uint32_t free_head; //linear address free head of this region
size_t max_slot_size; //max slot size within this region
int caps; //caps of this region, `mmu_mem_caps_t`
mmu_target_t targets; //physical targets that this region is supported
TAILQ_HEAD(mem_block_head_, mem_block_) mem_block_head; //link head of allocated blocks within this region
} mem_region_t;
typedef struct {
/**
* number of memory regions that are available, after coalescing, this number should be smaller than or equal to `SOC_MMU_LINEAR_ADDRESS_REGION_NUM`
*/
uint32_t num_regions;
/**
* This saves the available MMU linear address regions,
* after reserving flash .rodata and .text, and after coalescing.
* Only the first `num_regions` items are valid
*/
mem_region_t mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM];
} mmu_ctx_t;
static mmu_ctx_t s_mmu_ctx;
#if ENABLE_PADDR_CHECK
static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
#endif //#if ENABLE_PADDR_CHECK
#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
static void s_reserve_irom_region(mem_region_t *hw_mem_regions, int region_nums)
{
/**
* We follow the way how 1st bootloader load flash .text:
*
* - Now IBUS addresses (between `_instruction_reserved_start` and `_instruction_reserved_end`) are consecutive on all chips,
* we strongly rely on this to calculate the .text length
*/
extern int _instruction_reserved_start;
extern int _instruction_reserved_end;
size_t irom_len_to_reserve = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
assert((mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_start)) == irom_len_to_reserve);
irom_len_to_reserve += (uint32_t)&_instruction_reserved_start - ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
irom_len_to_reserve = ALIGN_UP_BY(irom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_instruction_reserved_start, irom_len_to_reserve);
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
if (bus_mask & hw_mem_regions[i].bus_id) {
if (hw_mem_regions[i].region_size <= irom_len_to_reserve) {
hw_mem_regions[i].free_head = hw_mem_regions[i].end;
hw_mem_regions[i].max_slot_size = 0;
irom_len_to_reserve -= hw_mem_regions[i].region_size;
} else {
hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + irom_len_to_reserve;
hw_mem_regions[i].max_slot_size -= irom_len_to_reserve;
}
}
}
}
static void s_reserve_drom_region(mem_region_t *hw_mem_regions, int region_nums)
{
/**
* Similarly, we follow the way how 1st bootloader load flash .rodata:
*/
extern int _rodata_reserved_start;
extern int _rodata_reserved_end;
size_t drom_len_to_reserve = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
assert((mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_start)) == drom_len_to_reserve);
drom_len_to_reserve += (uint32_t)&_rodata_reserved_start - ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
drom_len_to_reserve = ALIGN_UP_BY(drom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_rodata_reserved_start, drom_len_to_reserve);
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
if (bus_mask & hw_mem_regions[i].bus_id) {
if (hw_mem_regions[i].region_size <= drom_len_to_reserve) {
hw_mem_regions[i].free_head = hw_mem_regions[i].end;
hw_mem_regions[i].max_slot_size = 0;
drom_len_to_reserve -= hw_mem_regions[i].region_size;
} else {
hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + drom_len_to_reserve;
hw_mem_regions[i].max_slot_size -= drom_len_to_reserve;
}
}
}
}
#endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
void esp_mmu_map_init(void)
{
mem_region_t hw_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {};
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
hw_mem_regions[i].start = g_mmu_mem_regions[i].start;
hw_mem_regions[i].end = g_mmu_mem_regions[i].end;
hw_mem_regions[i].region_size = g_mmu_mem_regions[i].size;
hw_mem_regions[i].max_slot_size = g_mmu_mem_regions[i].size;
hw_mem_regions[i].free_head = g_mmu_mem_regions[i].start;
hw_mem_regions[i].bus_id = g_mmu_mem_regions[i].bus_id;
hw_mem_regions[i].caps = g_mmu_mem_regions[i].caps;
hw_mem_regions[i].targets = g_mmu_mem_regions[i].targets;
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
assert(__builtin_popcount(hw_mem_regions[i].bus_id) == 1);
#endif
assert(hw_mem_regions[i].region_size % CONFIG_MMU_PAGE_SIZE == 0);
}
#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
//First reserve memory regions used for irom and drom, as we must follow the way how 1st bootloader load them
s_reserve_irom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
s_reserve_drom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
#endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
if (SOC_MMU_LINEAR_ADDRESS_REGION_NUM > 1) {
//Now we can coalesce adjacent regions
for (int i = 1; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
mem_region_t *a = &hw_mem_regions[i - 1];
mem_region_t *b = &hw_mem_regions[i];
if ((b->free_head == a->end) && (b->caps == a->caps) && (b->targets == a->targets)) {
a->caps = MEM_REGION_MERGED;
b->bus_id |= a->bus_id;
b->start = a->start;
b->region_size += a->region_size;
b->free_head = a->free_head;
b->max_slot_size += a->max_slot_size;
}
}
}
//Count the mem regions left after coalescing
uint32_t region_num = 0;
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
if(hw_mem_regions[i].caps != MEM_REGION_MERGED) {
region_num++;
}
}
ESP_EARLY_LOGV(TAG, "after coalescing, %d regions are left", region_num);
//Initialise `s_mmu_ctx.mem_regions[]`, as we've done all static allocation, to prepare available virtual memory regions
uint32_t available_region_idx = 0;
s_mmu_ctx.num_regions = region_num;
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
if (hw_mem_regions[i].caps == MEM_REGION_MERGED) {
continue;
}
memcpy(&s_mmu_ctx.mem_regions[available_region_idx], &hw_mem_regions[i], sizeof(mem_region_t));
available_region_idx++;
}
for (int i = 0; i < available_region_idx; i++) {
TAILQ_INIT(&s_mmu_ctx.mem_regions[i].mem_block_head);
}
assert(available_region_idx == region_num);
}
static esp_err_t s_mem_caps_check(mmu_mem_caps_t caps)
{
if (caps & MMU_MEM_CAP_EXEC) {
if ((caps & MMU_MEM_CAP_8BIT) || (caps & MMU_MEM_CAP_WRITE)) {
//None of the executable memory are expected to be 8-bit accessible or writable.
return ESP_ERR_INVALID_ARG;
}
caps |= MMU_MEM_CAP_32BIT;
}
return ESP_OK;
}
esp_err_t esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps, mmu_target_t target, size_t *out_len)
{
ESP_RETURN_ON_FALSE(out_len, ESP_ERR_INVALID_ARG, TAG, "null pointer");
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
*out_len = 0;
size_t max = 0;
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
if (((s_mmu_ctx.mem_regions[i].caps & caps) == caps) && ((s_mmu_ctx.mem_regions[i].targets & target) == target)) {
if (s_mmu_ctx.mem_regions[i].max_slot_size > max) {
max = s_mmu_ctx.mem_regions[i].max_slot_size;
}
}
}
*out_len = max;
return ESP_OK;
}
static int32_t s_find_available_region(mem_region_t *mem_regions, uint32_t region_nums, size_t size, mmu_mem_caps_t caps, mmu_target_t target)
{
int32_t found_region_id = -1;
for (int i = 0; i < region_nums; i++) {
if (((mem_regions[i].caps & caps) == caps) && ((mem_regions[i].targets & target) == target)) {
if (mem_regions[i].max_slot_size >= size) {
found_region_id = i;
break;
}
}
}
return found_region_id;
}
esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps, mmu_target_t target, const void **out_ptr)
{
ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
uint32_t laddr = 0;
int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
if (found_region_id == -1) {
ESP_EARLY_LOGE(TAG, "no such vaddr range");
return ESP_ERR_NOT_FOUND;
}
laddr = (uint32_t)s_mmu_ctx.mem_regions[found_region_id].free_head;
s_mmu_ctx.mem_regions[found_region_id].free_head += aligned_size;
s_mmu_ctx.mem_regions[found_region_id].max_slot_size -= aligned_size;
ESP_EARLY_LOGV(TAG, "found laddr is 0x%x", laddr);
uint32_t vaddr = 0;
if (caps & MMU_MEM_CAP_EXEC) {
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION);
} else {
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA);
}
*out_ptr = (void *)vaddr;
return ESP_OK;
}
IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_caps_t *out_caps)
{
mem_region_t *region = NULL;
mem_block_t *mem_block = NULL;
bool found = false;
mem_block_t *found_block = NULL;
if (out_caps == NULL) {
return ESP_ERR_INVALID_ARG;
}
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
region = &s_mmu_ctx.mem_regions[i];
TAILQ_FOREACH(mem_block, &region->mem_block_head, entries) {
if (mem_block == TAILQ_FIRST(&region->mem_block_head) || mem_block == TAILQ_LAST(&region->mem_block_head, mem_block_head_)) {
//we don't care the dummy_head and the dummy_tail
continue;
}
//now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
if (mem_block->paddr_start == paddr) {
found = true;
found_block = mem_block;
break;
}
}
}
if (!found) {
return ESP_ERR_NOT_FOUND;
}
*out_caps = found_block->caps;
return ESP_OK;
}
static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start, uint32_t size)
{
#if CONFIG_IDF_TARGET_ESP32
/**
* On ESP32, due to hardware limitation, we don't have an
* easy way to sync between cache and external memory wrt
* certain range. So we do a full sync here
*/
cache_sync();
#else //Other chips
cache_hal_invalidate_addr(vaddr_start, size);
#endif // CONFIG_IDF_TARGET_ESP32
}
static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
{
/**
* Disable Cache, after this function, involved code and data should be placed in internal RAM.
*
* @note we call this for now, but this will be refactored to move out of `spi_flash`
*/
spi_flash_disable_interrupts_caches_and_other_cpu();
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
cache_ll_l1_enable_bus(0, bus_mask);
#if !CONFIG_FREERTOS_UNICORE
bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
cache_ll_l1_enable_bus(1, bus_mask);
#endif
s_do_cache_invalidate(vaddr_start, size);
//enable Cache, after this function, internal RAM access is no longer mandatory
spi_flash_enable_interrupts_caches_and_other_cpu();
ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%"PRIx32, actual_mapped_len);
}
esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target, mmu_mem_caps_t caps, int flags, void **out_ptr)
{
esp_err_t ret = ESP_FAIL;
ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
#if !SOC_SPIRAM_SUPPORTED || CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE(!(target & MMU_TARGET_PSRAM0), ESP_ERR_NOT_SUPPORTED, TAG, "PSRAM is not supported");
#endif
ESP_RETURN_ON_FALSE((paddr_start % CONFIG_MMU_PAGE_SIZE == 0), ESP_ERR_INVALID_ARG, TAG, "paddr must be rounded up to the nearest multiple of CONFIG_MMU_PAGE_SIZE");
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
if (found_region_id == -1) {
ESP_EARLY_LOGE(TAG, "no such vaddr range");
return ESP_ERR_NOT_FOUND;
}
//Now we're sure we can find an available block inside a certain region
mem_region_t *found_region = &s_mmu_ctx.mem_regions[found_region_id];
mem_block_t *dummy_head = NULL;
mem_block_t *dummy_tail = NULL;
mem_block_t *new_block = NULL;
if (TAILQ_EMPTY(&found_region->mem_block_head)) {
dummy_head = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_GOTO_ON_FALSE(dummy_head, ESP_ERR_NO_MEM, err, TAG, "no mem");
dummy_head->laddr_start = found_region->free_head;
dummy_head->laddr_end = found_region->free_head;
//We don't care vaddr or paddr address for dummy head
dummy_head->size = 0;
dummy_head->caps = caps;
TAILQ_INSERT_HEAD(&found_region->mem_block_head, dummy_head, entries);
dummy_tail = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_GOTO_ON_FALSE(dummy_tail, ESP_ERR_NO_MEM, err, TAG, "no mem");
dummy_tail->laddr_start = found_region->end;
dummy_tail->laddr_end = found_region->end;
//We don't care vaddr or paddr address for dummy tail
dummy_tail->size = 0;
dummy_tail->caps = caps;
TAILQ_INSERT_TAIL(&found_region->mem_block_head, dummy_tail, entries);
}
//Check if paddr is overlapped
mem_block_t *mem_block = NULL;
#if ENABLE_PADDR_CHECK
bool is_enclosed = false;
bool is_overlapped = false;
bool allow_overlap = flags & ESP_MMU_MMAP_FLAG_PADDR_SHARED;
TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
if (target == mem_block->target) {
if ((s_is_enclosed(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
//the to-be-mapped paddr block is mapped already
is_enclosed = true;
break;
}
if (!allow_overlap && (s_is_overlapped(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
is_overlapped = true;
break;
}
}
}
if (is_enclosed) {
ESP_LOGW(TAG, "paddr block is mapped already, vaddr_start: %p, size: 0x%x", (void *)mem_block->vaddr_start, mem_block->size);
/*
* This condition is triggered when `s_is_enclosed` is true and hence
* we are sure that `paddr_start` >= `mem_block->paddr_start`.
*
* Add the offset of new physical address while returning the virtual
* address.
*/
const uint32_t new_paddr_offset = paddr_start - mem_block->paddr_start;
*out_ptr = (void *)mem_block->vaddr_start + new_paddr_offset;
return ESP_ERR_INVALID_STATE;
}
if (!allow_overlap && is_overlapped) {
ESP_LOGE(TAG, "paddr block is overlapped with an already mapped paddr block");
return ESP_ERR_INVALID_ARG;
}
#endif //#if ENABLE_PADDR_CHECK
new_block = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_GOTO_ON_FALSE(new_block, ESP_ERR_NO_MEM, err, TAG, "no mem");
//Reserve this block as it'll be mapped
bool found = false;
// Get the end address of the dummy_head block, which is always first block on the list
uint32_t last_end = TAILQ_FIRST(&found_region->mem_block_head)->laddr_end;
size_t slot_len = 0;
size_t max_slot_len = 0;
mem_block_t *found_block = NULL; //This stands for the block we found, whose slot between its prior block is where we will insert the new block to
TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
slot_len = mem_block->laddr_start - last_end;
if (!found) {
if (slot_len >= aligned_size) {
//Found it
found = true;
found_block = mem_block;
slot_len -= aligned_size;
new_block->laddr_start = last_end;
}
}
max_slot_len = (slot_len > max_slot_len) ? slot_len : max_slot_len;
last_end = mem_block->laddr_end;
}
assert(found);
//insert the to-be-mapped new block to the list
TAILQ_INSERT_BEFORE(found_block, new_block, entries);
//Finally, we update the max_slot_size
found_region->max_slot_size = max_slot_len;
//Now we fill others according to the found `new_block->laddr_start`
new_block->laddr_end = new_block->laddr_start + aligned_size;
new_block->size = aligned_size;
new_block->caps = caps;
if (caps & MMU_MEM_CAP_EXEC) {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION);
} else {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA);
}
new_block->paddr_start = paddr_start;
new_block->paddr_end = paddr_start + aligned_size;
new_block->target = target;
//do mapping
s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
*out_ptr = (void *)new_block->vaddr_start;
return ESP_OK;
err:
if (dummy_tail) {
free(dummy_tail);
}
if (dummy_head) {
free(dummy_head);
}
return ret;
}
static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
{
/**
* Disable Cache, after this function, involved code and data should be placed in internal RAM.
*
* @note we call this for now, but this will be refactored to move out of `spi_flash`
*/
spi_flash_disable_interrupts_caches_and_other_cpu();
mmu_hal_unmap_region(0, vaddr_start, size);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
mmu_hal_unmap_region(1, vaddr_start, size);
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
//enable Cache, after this function, internal RAM access is no longer mandatory
spi_flash_enable_interrupts_caches_and_other_cpu();
}
esp_err_t esp_mmu_unmap(void *ptr)
{
ESP_RETURN_ON_FALSE(ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
mem_region_t *region = NULL;
mem_block_t *mem_block = NULL;
uint32_t ptr_laddr = mmu_ll_vaddr_to_laddr((uint32_t)ptr);
size_t slot_len = 0;
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
if (ptr_laddr >= s_mmu_ctx.mem_regions[i].free_head && ptr_laddr < s_mmu_ctx.mem_regions[i].end) {
region = &s_mmu_ctx.mem_regions[i];
}
}
ESP_RETURN_ON_FALSE(region, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer is outside external memory regions");
bool found = false;
mem_block_t *found_block = NULL;
TAILQ_FOREACH(mem_block, &region->mem_block_head, entries) {
if (mem_block == TAILQ_FIRST(&region->mem_block_head) || mem_block == TAILQ_LAST(&region->mem_block_head, mem_block_head_)) {
//we don't care the dummy_head and the dummy_tail
continue;
}
//now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
if (mem_block->laddr_start == ptr_laddr) {
slot_len = TAILQ_NEXT(mem_block, entries)->laddr_start - TAILQ_PREV(mem_block, mem_block_head_, entries)->laddr_end;
region->max_slot_size = (slot_len > region->max_slot_size) ? slot_len : region->max_slot_size;
found = true;
found_block = mem_block;
break;
}
}
ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer isn't mapped yet");
//do unmap
s_do_unmapping(mem_block->vaddr_start, mem_block->size);
//remove the already unmapped block from the list
TAILQ_REMOVE(&region->mem_block_head, found_block, entries);
free(found_block);
return ESP_OK;
}
esp_err_t esp_mmu_map_dump_mapped_blocks(FILE* stream)
{
char line[100];
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
fprintf(stream, "region %d:\n", i);
fprintf(stream, "%-15s %-14s %-14s %-12s %-12s %-12s\n", "Bus ID", "Start", "Free Head", "End", "Caps", "Max Slot Size");
char *buf = line;
size_t len = sizeof(line);
memset(line, 0x0, len);
snprintf(buf, len, "0x%-13x 0x%-12"PRIx32" 0x%-11"PRIx32" 0x%-10"PRIx32" 0x%-10x 0x%-8x\n",
s_mmu_ctx.mem_regions[i].bus_id,
s_mmu_ctx.mem_regions[i].start,
s_mmu_ctx.mem_regions[i].free_head,
s_mmu_ctx.mem_regions[i].end,
s_mmu_ctx.mem_regions[i].caps,
s_mmu_ctx.mem_regions[i].max_slot_size);
fputs(line, stream);
fprintf(stream, "mapped blocks:\n");
fprintf(stream, "%-4s %-13s %-12s %-12s %-6s %-13s %-11s\n", "ID", "Vaddr Start", "Vaddr End", "Block Size", "Caps", "Paddr Start", "Paddr End");
mem_region_t *region = &s_mmu_ctx.mem_regions[i];
mem_block_t *mem_block = NULL;
int id = 0;
TAILQ_FOREACH(mem_block, &region->mem_block_head, entries) {
if (mem_block != TAILQ_FIRST(&region->mem_block_head) && mem_block != TAILQ_LAST(&region->mem_block_head, mem_block_head_)) {
snprintf(buf, len, "%-4d 0x%-11x 0x%-10x 0x%-10x 0x%-4x 0x%-11"PRIx32" 0x%-8"PRIx32"\n",
id,
mem_block->vaddr_start,
mem_block->vaddr_end,
mem_block->size,
mem_block->caps,
mem_block->paddr_start,
mem_block->paddr_end);
fputs(line, stream);
id++;
}
}
fprintf(stream, "\n");
}
return ESP_OK;
}
/*---------------------------------------------------------------
Private dump functions, IRAM Safe
---------------------------------------------------------------*/
esp_err_t IRAM_ATTR esp_mmu_map_dump_mapped_blocks_private(void)
{
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
mem_region_t *region = &s_mmu_ctx.mem_regions[i];
mem_block_t *mem_block = NULL;
TAILQ_FOREACH(mem_block, &region->mem_block_head, entries) {
if (mem_block != TAILQ_FIRST(&region->mem_block_head) && mem_block != TAILQ_LAST(&region->mem_block_head, mem_block_head_)) {
ESP_DRAM_LOGI(TAG, "block vaddr_start: 0x%x", mem_block->vaddr_start);
ESP_DRAM_LOGI(TAG, "block vaddr_end: 0x%x", mem_block->vaddr_end);
ESP_DRAM_LOGI(TAG, "block size: 0x%x", mem_block->size);
ESP_DRAM_LOGI(TAG, "block caps: 0x%x\n", mem_block->caps);
ESP_DRAM_LOGI(TAG, "block paddr_start: 0x%x\n", mem_block->paddr_start);
ESP_DRAM_LOGI(TAG, "block paddr_end: 0x%x\n", mem_block->paddr_end);
}
}
ESP_DRAM_LOGI(TAG, "region bus_id: 0x%x", s_mmu_ctx.mem_regions[i].bus_id);
ESP_DRAM_LOGI(TAG, "region start: 0x%x", s_mmu_ctx.mem_regions[i].start);
ESP_DRAM_LOGI(TAG, "region end: 0x%x", s_mmu_ctx.mem_regions[i].end);
ESP_DRAM_LOGI(TAG, "region caps: 0x%x\n", s_mmu_ctx.mem_regions[i].caps);
}
return ESP_OK;
}
/*---------------------------------------------------------------
Helper APIs for conversion between vaddr and paddr
---------------------------------------------------------------*/
static bool NOINLINE_ATTR IRAM_ATTR s_vaddr_to_paddr(uint32_t vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
{
//we call this for now, but this will be refactored to move out of `spi_flash`
spi_flash_disable_interrupts_caches_and_other_cpu();
//On ESP32, core 1 settings should be the same as the core 0
bool is_mapped = mmu_hal_vaddr_to_paddr(0, vaddr, out_paddr, out_target);
spi_flash_enable_interrupts_caches_and_other_cpu();
return is_mapped;
}
esp_err_t esp_mmu_vaddr_to_paddr(void *vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
{
ESP_RETURN_ON_FALSE(vaddr && out_paddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
ESP_RETURN_ON_FALSE(mmu_hal_check_valid_ext_vaddr_region(0, (uint32_t)vaddr, 1, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION), ESP_ERR_INVALID_ARG, TAG, "not a valid external virtual address");
esp_paddr_t paddr = 0;
mmu_target_t target = 0;
bool is_mapped = s_vaddr_to_paddr((uint32_t)vaddr, &paddr, &target);
ESP_RETURN_ON_FALSE(is_mapped, ESP_ERR_NOT_FOUND, TAG, "vaddr isn't mapped");
*out_paddr = paddr;
*out_target = target;
return ESP_OK;
}
static bool NOINLINE_ATTR IRAM_ATTR s_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, uint32_t *out_vaddr)
{
//we call this for now, but this will be refactored to move out of `spi_flash`
spi_flash_disable_interrupts_caches_and_other_cpu();
//On ESP32, core 1 settings should be the same as the core 0
bool found = mmu_hal_paddr_to_vaddr(0, paddr, target, type, out_vaddr);
spi_flash_enable_interrupts_caches_and_other_cpu();
return found;
}
esp_err_t esp_mmu_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, void **out_vaddr)
{
ESP_RETURN_ON_FALSE(out_vaddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
uint32_t vaddr = 0;
bool found = false;
found = s_paddr_to_vaddr(paddr, target, type, &vaddr);
ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "paddr isn't mapped");
*out_vaddr = (void *)vaddr;
return ESP_OK;
}
#if ENABLE_PADDR_CHECK
/*---------------------------------------------------------------
Helper functions to check block
---------------------------------------------------------------*/
/**
* Check if a new block is enclosed by another, e.g.
*
* This is enclosed:
*
* new_block_start new_block_end
* |-------- New Block --------|
* |--------------- Block ---------------|
* block_start block_end
*
* @note Note the difference between `s_is_overlapped()` below
*
* @param block_start An original block start
* @param block_end An original block end
* @param new_block_start New block start
* @param new_block_size New block size
*
* @return True: new block is enclosed; False: new block is not enclosed
*/
static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
{
bool is_enclosed = false;
uint32_t new_block_end = new_block_start + new_block_size;
if ((new_block_start >= block_start) && (new_block_end <= block_end)) {
is_enclosed = true;
} else {
is_enclosed = false;
}
return is_enclosed;
}
/**
* Check if a new block is overlapped by another, e.g.
*
* This is overlapped:
*
* new_block_start new_block_end
* |---------- New Block ----------|
* |--------------- Block ---------------|
* block_start block_end
*
* @note Note the difference between `s_is_enclosed()` above
*
* @param block_start An original block start
* @param block_end An original block end
* @param new_block_start New block start
* @param new_block_size New block size
*
* @return True: new block is overlapped; False: new block is not overlapped
*/
static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
{
bool is_overlapped = false;
uint32_t new_block_end = new_block_start + new_block_size;
if (((new_block_start < block_start) && (new_block_end > block_start)) ||
((new_block_start < block_end) && (new_block_end > block_end))) {
is_overlapped = true;
} else {
is_overlapped = false;
}
return is_overlapped;
}
#endif //#if ENABLE_PADDR_CHECK