esp-idf/components/vfs/test_apps/main/test_vfs_fd.c

337 lines
10 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/fcntl.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_vfs.h"
#include "unity.h"
#include "esp_log.h"
#include "test_utils.h"
#include "ccomp_timer.h"
#include "driver/uart.h"
#include "driver/uart_vfs.h"
#include "lwip/sockets.h"
#include "lwip/netdb.h"
#define VFS_PREF1 "/vfs1"
#define VFS_PREF2 "/vfs2"
#define FILE1 "/file1"
typedef struct {
const char *path;
int fd;
} collision_test_vfs_param_t;
static int collision_test_vfs_open(void* ctx, const char * path, int flags, int mode)
{
const collision_test_vfs_param_t *param = (collision_test_vfs_param_t *) ctx;
if (strcmp(param->path, path) == 0) {
return param->fd;
}
errno = ENOENT;
return -1;
}
static int collision_test_vfs_close(void* ctx, int fd)
{
const collision_test_vfs_param_t *param = (collision_test_vfs_param_t *) ctx;
if (fd == param->fd) {
return 0;
}
errno = EBADF;
return -1;
}
TEST_CASE("FDs from different VFSs don't collide", "[vfs]")
{
collision_test_vfs_param_t param = {
.path = FILE1,
.fd = 1,
};
esp_vfs_t desc = {
.flags = ESP_VFS_FLAG_CONTEXT_PTR,
.open_p = collision_test_vfs_open,
.close_p = collision_test_vfs_close,
};
TEST_ESP_OK( esp_vfs_register(VFS_PREF1, &desc, &param) );
TEST_ESP_OK( esp_vfs_register(VFS_PREF2, &desc, &param) );
const int fd1 = open(VFS_PREF1 FILE1, 0, 0);
const int fd2 = open(VFS_PREF2 FILE1, 0, 0);
TEST_ASSERT_NOT_EQUAL(fd1, -1);
TEST_ASSERT_NOT_EQUAL(fd2, -1);
// Both VFS drivers return local FD 1 but the global FDs returned by
// open() should not be the same
TEST_ASSERT_NOT_EQUAL(fd1, fd2);
TEST_ASSERT_NOT_EQUAL(close(fd1), -1);
TEST_ASSERT_NOT_EQUAL(close(fd2), -1);
TEST_ESP_OK( esp_vfs_unregister(VFS_PREF1) );
TEST_ESP_OK( esp_vfs_unregister(VFS_PREF2) );
}
#define FILE2 "/file2"
#define FILE3 "/file3"
#define FILE4 "/file4"
#define CONCURRENT_TEST_STACK_SIZE (2*1024)
#define CONCURRENT_TEST_MAX_WAIT (1000 / portTICK_PERIOD_MS)
typedef struct {
const char *path;
SemaphoreHandle_t done;
} concurrent_test_task_param_t;
typedef struct {
const char *path;
int local_fd;
} concurrent_test_path_to_fd_t;
static concurrent_test_path_to_fd_t concurrent_test_path_to_fd[] = {
{ .path = FILE1, .local_fd = 1 },
{ .path = FILE2, .local_fd = 2 },
{ .path = FILE3, .local_fd = 3 },
{ .path = FILE4, .local_fd = 4 },
};
static int concurrent_test_vfs_open(const char * path, int flags, int mode)
{
for (size_t i = 0; i < sizeof(concurrent_test_path_to_fd)/sizeof(concurrent_test_path_to_fd[0]); ++i) {
if (strcmp(concurrent_test_path_to_fd[i].path, path) == 0) {
// This behaves like UART: opening the same file gives always the
// same local FD (even when opening at the same time multiple FDs)
return concurrent_test_path_to_fd[i].local_fd;
}
}
errno = ENOENT;
return -1;
}
static int concurrent_test_vfs_close(int fd)
{
for (size_t i = 0; i < sizeof(concurrent_test_path_to_fd)/sizeof(concurrent_test_path_to_fd[0]); ++i) {
if (concurrent_test_path_to_fd[i].local_fd == fd) {
return 0;
}
}
errno = EBADF;
return -1;
}
static inline void test_delay_rand_ms(int ms)
{
vTaskDelay((rand() % ms) / portTICK_PERIOD_MS);
}
static void concurrent_task(void *param)
{
concurrent_test_task_param_t *task_param = (concurrent_test_task_param_t *) param;
test_delay_rand_ms(10);
for (int i = 0; i < 10; ++i) {
const int global_fd = open(task_param->path, 0, 0);
TEST_ASSERT_NOT_EQUAL(global_fd, -1);
test_delay_rand_ms(10);
TEST_ASSERT_NOT_EQUAL(close(global_fd), -1);
test_delay_rand_ms(10);
}
xSemaphoreGive(task_param->done);
vTaskDelete(NULL);
}
TEST_CASE("VFS can handle concurrent open/close requests", "[vfs]")
{
esp_vfs_t desc = {
.flags = ESP_VFS_FLAG_DEFAULT,
.open = concurrent_test_vfs_open,
.close = concurrent_test_vfs_close,
};
TEST_ESP_OK( esp_vfs_register(VFS_PREF1, &desc, NULL) );
concurrent_test_task_param_t param1 = { .path = VFS_PREF1 FILE1, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param2 = { .path = VFS_PREF1 FILE1, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param3 = { .path = VFS_PREF1 FILE2, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param4 = { .path = VFS_PREF1 FILE2, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param5 = { .path = VFS_PREF1 FILE3, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param6 = { .path = VFS_PREF1 FILE3, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param7 = { .path = VFS_PREF1 FILE4, .done = xSemaphoreCreateBinary() };
concurrent_test_task_param_t param8 = { .path = VFS_PREF1 FILE4, .done = xSemaphoreCreateBinary() };
TEST_ASSERT_NOT_NULL(param1.done);
TEST_ASSERT_NOT_NULL(param2.done);
TEST_ASSERT_NOT_NULL(param3.done);
TEST_ASSERT_NOT_NULL(param4.done);
TEST_ASSERT_NOT_NULL(param5.done);
TEST_ASSERT_NOT_NULL(param6.done);
TEST_ASSERT_NOT_NULL(param7.done);
TEST_ASSERT_NOT_NULL(param8.done);
const int cpuid0 = 0;
const int cpuid1 = CONFIG_FREERTOS_NUMBER_OF_CORES - 1;
srand(time(NULL));
xTaskCreatePinnedToCore(concurrent_task, "t1", CONCURRENT_TEST_STACK_SIZE, &param1, 3, NULL, cpuid0);
xTaskCreatePinnedToCore(concurrent_task, "t2", CONCURRENT_TEST_STACK_SIZE, &param2, 3, NULL, cpuid1);
xTaskCreatePinnedToCore(concurrent_task, "t3", CONCURRENT_TEST_STACK_SIZE, &param3, 3, NULL, cpuid0);
xTaskCreatePinnedToCore(concurrent_task, "t4", CONCURRENT_TEST_STACK_SIZE, &param4, 3, NULL, cpuid1);
xTaskCreatePinnedToCore(concurrent_task, "t5", CONCURRENT_TEST_STACK_SIZE, &param5, 3, NULL, cpuid0);
xTaskCreatePinnedToCore(concurrent_task, "t6", CONCURRENT_TEST_STACK_SIZE, &param6, 3, NULL, cpuid1);
xTaskCreatePinnedToCore(concurrent_task, "t7", CONCURRENT_TEST_STACK_SIZE, &param7, 3, NULL, cpuid0);
xTaskCreatePinnedToCore(concurrent_task, "t8", CONCURRENT_TEST_STACK_SIZE, &param8, 3, NULL, cpuid1);
TEST_ASSERT_EQUAL(xSemaphoreTake(param1.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param2.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param3.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param4.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param5.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param6.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param7.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
TEST_ASSERT_EQUAL(xSemaphoreTake(param8.done, CONCURRENT_TEST_MAX_WAIT), pdTRUE);
vSemaphoreDelete(param1.done);
vSemaphoreDelete(param2.done);
vSemaphoreDelete(param3.done);
vSemaphoreDelete(param4.done);
vSemaphoreDelete(param5.done);
vSemaphoreDelete(param6.done);
vSemaphoreDelete(param7.done);
vSemaphoreDelete(param8.done);
TEST_ESP_OK( esp_vfs_unregister(VFS_PREF1) );
}
static int time_test_vfs_open(const char *path, int flags, int mode)
{
return 1;
}
static int time_test_vfs_close(int fd)
{
return 1;
}
static int time_test_vfs_write(int fd, const void *data, size_t size)
{
return size;
}
TEST_CASE("Open & write & close through VFS passes performance test", "[vfs]")
{
esp_vfs_t desc = {
.flags = ESP_VFS_FLAG_DEFAULT,
.open = time_test_vfs_open,
.close = time_test_vfs_close,
.write = time_test_vfs_write,
};
TEST_ESP_OK( esp_vfs_register(VFS_PREF1, &desc, NULL) );
ccomp_timer_start();
const int iter_count = 5000;
for (int i = 0; i < iter_count; ++i) {
const int fd = open(VFS_PREF1 FILE1, 0, 0);
TEST_ASSERT_NOT_EQUAL(fd, -1);
write(fd, "a", 1);
TEST_ASSERT_NOT_EQUAL(close(fd), -1);
}
const int64_t time_diff_us = ccomp_timer_stop();
const int ns_per_iter = (int) (time_diff_us * 1000 / iter_count);
TEST_ESP_OK( esp_vfs_unregister(VFS_PREF1) );
#ifdef CONFIG_SPIRAM
TEST_PERFORMANCE_CCOMP_LESS_THAN(VFS_OPEN_WRITE_CLOSE_TIME_PSRAM, "%dns", ns_per_iter);
#else
TEST_PERFORMANCE_CCOMP_LESS_THAN(VFS_OPEN_WRITE_CLOSE_TIME, "%dns", ns_per_iter);
#endif
}
static int vfs_overlap_test_open(const char * path, int flags, int mode)
{
return 0;
}
static int vfs_overlap_test_close(int fd)
{
return 0;
}
TEST_CASE("esp_vfs_register_fd_range checks for overlap", "[vfs]")
{
esp_vfs_t vfs1 = {
.open = vfs_overlap_test_open,
.close = vfs_overlap_test_close
};
TEST_ESP_OK(esp_vfs_register("/test", &vfs1, NULL));
int fd = open("/test/1", 0, 0);
TEST_ASSERT_NOT_EQUAL(-1, fd);
esp_vfs_t vfs2 = { };
esp_err_t err = esp_vfs_register_fd_range(&vfs2, NULL, fd, fd + 1);
close(fd);
TEST_ESP_OK(esp_vfs_unregister("/test"));
TEST_ESP_ERR(ESP_ERR_INVALID_ARG, err);
}
static void socket_init(int *socket_fd)
{
const struct addrinfo hints = {
.ai_family = AF_INET,
.ai_socktype = SOCK_DGRAM,
};
struct addrinfo *res;
int err;
err = getaddrinfo("localhost", "80", &hints, &res);
TEST_ASSERT_EQUAL(err, 0);
TEST_ASSERT_NOT_NULL(res);
*socket_fd = socket(res->ai_family, res->ai_socktype, 0);
TEST_ASSERT(*socket_fd >= 0);
freeaddrinfo(res);
}
TEST_CASE("esp_vfs_dump_fds displays all registered fds in vfs", "[vfs]")
{
int uart_fd0, uart_fd1, uart_fd2;
int socket_fd=-1;
uart_fd0 = open("/dev/uart/0", O_RDWR);
TEST_ASSERT_NOT_EQUAL_MESSAGE(uart_fd0, -1, "Cannot open UART");
uart_fd1 = open("/dev/uart/1", O_RDWR);
TEST_ASSERT_NOT_EQUAL_MESSAGE(uart_fd1, -1, "Cannot open UART");
uart_fd2 = open("/dev/uart/1", O_RDWR);
TEST_ASSERT_NOT_EQUAL_MESSAGE(uart_fd2, -1, "Cannot open UART");
test_case_uses_tcpip();
socket_init(&socket_fd);
esp_vfs_dump_fds(stdout);
close(uart_fd0);
close(uart_fd1);
close(uart_fd2);
close(socket_fd);
}