esp-idf/components/sdmmc/sdmmc_cmd.c
2017-07-20 13:34:21 +08:00

704 lines
24 KiB
C

/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016 Espressif Systems (Shanghai) PTE LTD
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <string.h>
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/sdmmc_defs.h"
#include "driver/sdmmc_types.h"
#include "sdmmc_cmd.h"
#include "sys/param.h"
#define SDMMC_GO_IDLE_DELAY_MS 20
static const char* TAG = "sdmmc_cmd";
static esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd);
static esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd);
static esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card);
static esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr);
static esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp);
static esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp);
static esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid);
static esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid);
static esp_err_t sddmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_cid_t* out_cid);
static esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca);
static esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd);
static esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd);
static esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd);
static esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card);
static esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr);
static esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr);
static esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width);
static esp_err_t sdmmc_send_cmd_stop_transmission(sdmmc_card_t* card, uint32_t* status);
static esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status);
static esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable);
static uint32_t get_host_ocr(float voltage);
static void response_ntoh(sdmmc_response_t response);
static bool host_is_spi(const sdmmc_card_t* card)
{
return (card->host.flags & SDMMC_HOST_FLAG_SPI) != 0;
}
esp_err_t sdmmc_card_init(const sdmmc_host_t* config, sdmmc_card_t* card)
{
ESP_LOGD(TAG, "%s", __func__);
memset(card, 0, sizeof(*card));
memcpy(&card->host, config, sizeof(*config));
const bool is_spi = host_is_spi(card);
/* GO_IDLE_STATE (CMD0) command resets the card */
esp_err_t err = sdmmc_send_cmd_go_idle_state(card);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: go_idle_state (1) returned 0x%x", __func__, err);
return err;
}
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
sdmmc_send_cmd_go_idle_state(card);
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
/* SEND_IF_COND (CMD8) command is used to identify SDHC/SDXC cards.
* SD v1 and non-SD cards will not respond to this command.
*/
uint32_t host_ocr = get_host_ocr(config->io_voltage);
err = sdmmc_send_cmd_send_if_cond(card, host_ocr);
if (err == ESP_OK) {
ESP_LOGD(TAG, "SDHC/SDXC card");
host_ocr |= SD_OCR_SDHC_CAP;
} else if (err == ESP_ERR_TIMEOUT) {
ESP_LOGD(TAG, "CMD8 timeout; not an SDHC/SDXC card");
} else {
ESP_LOGE(TAG, "%s: send_if_cond (1) returned 0x%x", __func__, err);
return err;
}
/* In SPI mode, READ_OCR (CMD58) command is used to figure out which voltage
* ranges the card can support. This step is skipped since 1.8V isn't
* supported on the ESP32.
*/
/* In SD mode, CRC checks of data transfers are mandatory and performed
* by the hardware. In SPI mode, CRC16 of data transfers is optional and
* needs to be enabled.
*/
if (is_spi) {
err = sdmmc_send_cmd_crc_on_off(card, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_crc_on_off returned 0x%x", __func__, err);
return err;
}
}
/* Send SEND_OP_COND (ACMD41) command to the card until it becomes ready. */
err = sdmmc_send_cmd_send_op_cond(card, host_ocr, &card->ocr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_op_cond (1) returned 0x%x", __func__, err);
return err;
}
if (is_spi) {
err = sdmmc_send_cmd_read_ocr(card, &card->ocr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: read_ocr returned 0x%x", __func__, err);
return err;
}
}
ESP_LOGD(TAG, "host_ocr=0x%x card_ocr=0x%x", host_ocr, card->ocr);
/* Clear all voltage bits in host's OCR which the card doesn't support.
* Don't touch CCS bit because in SPI mode cards don't report CCS in ACMD41
* response.
*/
host_ocr &= (card->ocr | (~SD_OCR_VOL_MASK));
ESP_LOGD(TAG, "sdmmc_card_init: host_ocr=%08x, card_ocr=%08x", host_ocr, card->ocr);
if (!is_spi) {
err = sddmc_send_cmd_all_send_cid(card, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: all_send_cid returned 0x%x", __func__, err);
return err;
}
err = sdmmc_send_cmd_set_relative_addr(card, &card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_relative_addr returned 0x%x", __func__, err);
return err;
}
} else {
err = sdmmc_send_cmd_send_cid(card, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_cid returned 0x%x", __func__, err);
return err;
}
}
err = sdmmc_send_cmd_send_csd(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err);
return err;
}
const size_t max_sdsc_capacity = UINT32_MAX / card->csd.sector_size + 1;
if (!(card->ocr & SD_OCR_SDHC_CAP) &&
card->csd.capacity > max_sdsc_capacity) {
ESP_LOGW(TAG, "%s: SDSC card reports capacity=%u. Limiting to %u.",
__func__, card->csd.capacity, max_sdsc_capacity);
card->csd.capacity = max_sdsc_capacity;
}
if (!is_spi) {
err = sdmmc_send_cmd_select_card(card);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: select_card returned 0x%x", __func__, err);
return err;
}
}
if ((card->ocr & SD_OCR_SDHC_CAP) == 0) {
err = sdmmc_send_cmd_set_blocklen(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_blocklen returned 0x%x", __func__, err);
return err;
}
}
err = sdmmc_send_cmd_send_scr(card, &card->scr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_scr returned 0x%x", __func__, err);
return err;
}
if ((config->flags & SDMMC_HOST_FLAG_4BIT) &&
(card->scr.bus_width & SCR_SD_BUS_WIDTHS_4BIT)) {
ESP_LOGD(TAG, "switching to 4-bit bus mode");
err = sdmmc_send_cmd_set_bus_width(card, 4);
if (err != ESP_OK) {
ESP_LOGE(TAG, "set_bus_width failed");
return err;
}
err = (*config->set_bus_width)(config->slot, 4);
if (err != ESP_OK) {
ESP_LOGE(TAG, "slot->set_bus_width failed");
return err;
}
uint32_t status;
err = sdmmc_send_cmd_stop_transmission(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "stop_transmission failed (0x%x)", err);
return err;
}
}
uint32_t status = 0;
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
// TODO: add some timeout here
uint32_t count = 0;
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
return err;
}
if (++count % 10 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
if (config->max_freq_khz >= SDMMC_FREQ_HIGHSPEED &&
card->csd.tr_speed / 1000 >= SDMMC_FREQ_HIGHSPEED) {
ESP_LOGD(TAG, "switching to HS bus mode");
err = (*config->set_card_clk)(config->slot, SDMMC_FREQ_HIGHSPEED);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch peripheral to HS bus mode");
return err;
}
} else if (config->max_freq_khz >= SDMMC_FREQ_DEFAULT &&
card->csd.tr_speed / 1000 >= SDMMC_FREQ_DEFAULT) {
ESP_LOGD(TAG, "switching to DS bus mode");
err = (*config->set_card_clk)(config->slot, SDMMC_FREQ_DEFAULT);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch peripheral to HS bus mode");
return err;
}
}
sdmmc_scr_t scr_tmp;
err = sdmmc_send_cmd_send_scr(card, &scr_tmp);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_scr returned 0x%x", __func__, err);
return err;
}
if (memcmp(&card->scr, &scr_tmp, sizeof(scr_tmp)) != 0) {
ESP_LOGE(TAG, "got corrupted data after increasing clock frequency");
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
void sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card)
{
fprintf(stream, "Name: %s\n", card->cid.name);
fprintf(stream, "Type: %s\n", (card->ocr & SD_OCR_SDHC_CAP)?"SDHC/SDXC":"SDSC");
fprintf(stream, "Speed: %s\n", (card->csd.tr_speed > 25000000)?"high speed":"default speed");
fprintf(stream, "Size: %lluMB\n", ((uint64_t) card->csd.capacity) * card->csd.sector_size / (1024 * 1024));
fprintf(stream, "CSD: ver=%d, sector_size=%d, capacity=%d read_bl_len=%d\n",
card->csd.csd_ver,
card->csd.sector_size, card->csd.capacity, card->csd.read_block_len);
fprintf(stream, "SCR: sd_spec=%d, bus_width=%d\n", card->scr.sd_spec, card->scr.bus_width);
}
static esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
int slot = card->host.slot;
ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d",
slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen);
esp_err_t err = (*card->host.do_transaction)(slot, cmd);
if (err != 0) {
ESP_LOGD(TAG, "sdmmc_req_run returned 0x%x", err);
return err;
}
int state = MMC_R1_CURRENT_STATE(cmd->response);
ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
cmd->response[0],
cmd->response[1],
cmd->response[2],
cmd->response[3],
cmd->error,
state);
return cmd->error;
}
static esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
sdmmc_command_t app_cmd = {
.opcode = MMC_APP_CMD,
.flags = SCF_CMD_AC | SCF_RSP_R1,
.arg = MMC_ARG_RCA(card->rca),
};
esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
if (err != ESP_OK) {
return err;
}
// Check APP_CMD status bit (only in SD mode)
if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
ESP_LOGW(TAG, "card doesn't support APP_CMD");
return ESP_ERR_NOT_SUPPORTED;
}
return sdmmc_send_cmd(card, cmd);
}
static esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
{
sdmmc_command_t cmd = {
.opcode = MMC_GO_IDLE_STATE,
.flags = SCF_CMD_BC | SCF_RSP_R0,
};
return sdmmc_send_cmd(card, &cmd);
}
static esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
{
const uint8_t pattern = 0xaa; /* any pattern will do here */
sdmmc_command_t cmd = {
.opcode = SD_SEND_IF_COND,
.arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
.flags = SCF_CMD_BCR | SCF_RSP_R7,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
uint8_t response = cmd.response[0] & 0xff;
if (response != pattern) {
ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
static esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
{
sdmmc_command_t cmd = {
.arg = ocr,
.flags = SCF_CMD_BCR | SCF_RSP_R3,
.opcode = SD_APP_OP_COND
};
int nretries = 100; // arbitrary, BSD driver uses this value
for (; nretries != 0; --nretries) {
esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
// In SD protocol, card sets MEM_READY bit in OCR when it is ready.
// In SPI protocol, card clears IDLE_STATE bit in R1 response.
if (!host_is_spi(card)) {
if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
ocr == 0) {
break;
}
} else {
if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
break;
}
}
vTaskDelay(10 / portTICK_PERIOD_MS);
}
if (nretries == 0) {
return ESP_ERR_TIMEOUT;
}
if (ocrp) {
*ocrp = MMC_R3(cmd.response);
}
return ESP_OK;
}
static esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
{
assert(ocrp);
sdmmc_command_t cmd = {
.opcode = SD_READ_OCR,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*ocrp = SD_SPI_R3(cmd.response);
return ESP_OK;
}
esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid)
{
out_cid->mfg_id = SD_CID_MID(resp);
out_cid->oem_id = SD_CID_OID(resp);
SD_CID_PNM_CPY(resp, out_cid->name);
out_cid->revision = SD_CID_REV(resp);
out_cid->serial = SD_CID_PSN(resp);
out_cid->date = SD_CID_MDT(resp);
return ESP_OK;
}
static esp_err_t sddmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_cid_t* out_cid)
{
assert(out_cid);
sdmmc_command_t cmd = {
.opcode = MMC_ALL_SEND_CID,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
return sdmmc_decode_cid(cmd.response, out_cid);
}
static esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
{
assert(out_cid);
assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
sdmmc_response_t buf;
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CID,
.flags = SCF_CMD_READ | SCF_CMD_ADTC,
.arg = 0,
.data = &buf[0],
.datalen = sizeof(buf)
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
response_ntoh(buf);
return sdmmc_decode_cid(buf, out_cid);
}
static esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
{
assert(out_rca);
sdmmc_command_t cmd = {
.opcode = SD_SEND_RELATIVE_ADDR,
.flags = SCF_CMD_BCR | SCF_RSP_R6
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*out_rca = SD_R6_RCA(cmd.response);
return ESP_OK;
}
static esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
{
sdmmc_command_t cmd = {
.opcode = MMC_SET_BLOCKLEN,
.arg = csd->sector_size,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
static esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd)
{
out_csd->csd_ver = SD_CSD_CSDVER(response);
switch (out_csd->csd_ver) {
case SD_CSD_CSDVER_2_0:
out_csd->capacity = SD_CSD_V2_CAPACITY(response);
out_csd->read_block_len = SD_CSD_V2_BL_LEN;
break;
case SD_CSD_CSDVER_1_0:
out_csd->capacity = SD_CSD_CAPACITY(response);
out_csd->read_block_len = SD_CSD_READ_BL_LEN(response);
break;
default:
ESP_LOGE(TAG, "unknown SD CSD structure version 0x%x", out_csd->csd_ver);
return ESP_ERR_NOT_SUPPORTED;
}
out_csd->card_command_class = SD_CSD_CCC(response);
int read_bl_size = 1 << out_csd->read_block_len;
out_csd->sector_size = MIN(read_bl_size, 512);
if (out_csd->sector_size < read_bl_size) {
out_csd->capacity *= read_bl_size / out_csd->sector_size;
}
int speed = SD_CSD_SPEED(response);
if (speed == SD_CSD_SPEED_50_MHZ) {
out_csd->tr_speed = 50000000;
} else {
out_csd->tr_speed = 25000000;
}
return ESP_OK;
}
static esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
{
/* The trick with SEND_CSD is that in SPI mode, it acts as a data read
* command, while in SD mode it is an AC command with R2 response.
*/
sdmmc_response_t spi_buf;
const bool is_spi = host_is_spi(card);
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CSD,
.arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
.flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
(SCF_CMD_AC | SCF_RSP_R2),
.data = is_spi ? &spi_buf[0] : 0,
.datalen = is_spi ? sizeof(spi_buf) : 0,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
if (is_spi) {
response_ntoh(spi_buf);
}
return sdmmc_decode_csd(is_spi ? spi_buf : cmd.response, out_csd);
}
static esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card)
{
sdmmc_command_t cmd = {
.opcode = MMC_SELECT_CARD,
.arg = MMC_ARG_RCA(card->rca),
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
static esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr)
{
sdmmc_response_t resp = {0xabababab, 0xabababab, 0x12345678, 0x09abcdef};
resp[2] = __builtin_bswap32(raw_scr[0]);
resp[3] = __builtin_bswap32(raw_scr[1]);
int ver = SCR_STRUCTURE(resp);
if (ver != 0) {
return ESP_ERR_NOT_SUPPORTED;
}
out_scr->sd_spec = SCR_SD_SPEC(resp);
out_scr->bus_width = SCR_SD_BUS_WIDTHS(resp);
return ESP_OK;
}
static esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
{
size_t datalen = 8;
uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
if (buf == NULL) {
return ESP_ERR_NO_MEM;
}
sdmmc_command_t cmd = {
.data = buf,
.datalen = datalen,
.blklen = datalen,
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.opcode = SD_APP_SEND_SCR
};
esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
if (err == ESP_OK) {
err = sdmmc_decode_scr(buf, out_scr);
}
free(buf);
return err;
}
static esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
{
sdmmc_command_t cmd = {
.opcode = SD_APP_SET_BUS_WIDTH,
.flags = SCF_RSP_R1 | SCF_CMD_AC,
.arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1
};
return sdmmc_send_app_cmd(card, &cmd);
}
static esp_err_t sdmmc_send_cmd_stop_transmission(sdmmc_card_t* card, uint32_t* status)
{
sdmmc_command_t cmd = {
.opcode = MMC_STOP_TRANSMISSION,
.arg = 0,
.flags = SCF_RSP_R1B | SCF_CMD_AC
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err == 0) {
*status = MMC_R1(cmd.response);
}
return err;
}
static esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
{
assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
sdmmc_command_t cmd = {
.opcode = SD_CRC_ON_OFF,
.arg = crc_enable ? 1 : 0,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
static uint32_t get_host_ocr(float voltage)
{
// TODO: report exact voltage to the card
// For now tell that the host has 2.8-3.6V voltage range
(void) voltage;
return SD_OCR_VOL_MASK;
}
static void response_ntoh(sdmmc_response_t response)
{
for (int i = 0; i < 4; ++i) {
response[i] = __builtin_bswap32(response[i]);
}
}
static esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
{
sdmmc_command_t cmd = {
.opcode = MMC_SEND_STATUS,
.arg = MMC_ARG_RCA(card->rca),
.flags = SCF_CMD_AC | SCF_RSP_R1
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
if (out_status) {
*out_status = MMC_R1(cmd.response);
}
return ESP_OK;
}
esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
size_t start_block, size_t block_count)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) src,
.datalen = block_count * block_size
};
if (block_count == 1) {
cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
// TODO: add some timeout here
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
return err;
}
if (++count % 10 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
return ESP_OK;
}
esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
size_t start_block, size_t block_count)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) dst,
.datalen = block_count * block_size
};
if (block_count == 1) {
cmd.opcode = MMC_READ_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
// TODO: add some timeout here
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
return err;
}
if (++count % 10 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
return ESP_OK;
}