esp-idf/components/esp_lcd/i80/esp_lcd_panel_io_i80.c

814 lines
39 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/queue.h>
#include "sdkconfig.h"
#if CONFIG_LCD_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "esp_lcd_panel_io_interface.h"
#include "esp_lcd_panel_io.h"
#include "esp_rom_gpio.h"
#include "soc/soc_caps.h"
#include "esp_clk_tree.h"
#include "esp_memory_utils.h"
#include "esp_cache.h"
#include "driver/gpio.h"
#include "esp_private/gpio.h"
#include "esp_private/gdma.h"
#include "esp_private/gdma_link.h"
#include "esp_private/periph_ctrl.h"
#include "esp_lcd_common.h"
#include "soc/lcd_periph.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "hal/lcd_ll.h"
#include "hal/lcd_hal.h"
#include "hal/cache_ll.h"
#include "hal/cache_hal.h"
#define LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE 4095
#if defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AHB)
#define LCD_GDMA_NEW_CHANNEL gdma_new_ahb_channel
#define LCD_GDMA_DESCRIPTOR_ALIGN 4
#elif defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AXI)
#define LCD_GDMA_NEW_CHANNEL gdma_new_axi_channel
#define LCD_GDMA_DESCRIPTOR_ALIGN 8
#else
#error "Unsupported GDMA bus type for LCD i80"
#endif
#if SOC_NON_CACHEABLE_OFFSET
#define LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(addr) ((addr) + SOC_NON_CACHEABLE_OFFSET)
#else
#define LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(addr) (addr)
#endif
static const char *TAG = "lcd_panel.io.i80";
typedef struct esp_lcd_i80_bus_t esp_lcd_i80_bus_t;
typedef struct lcd_panel_io_i80_t lcd_panel_io_i80_t;
typedef struct lcd_i80_trans_descriptor_t lcd_i80_trans_descriptor_t;
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io);
static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config);
static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus);
static esp_err_t lcd_i80_select_periph_clock(esp_lcd_i80_bus_handle_t bus, lcd_clock_source_t clk_src);
static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config);
static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device);
static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descriptor_t *trans_desc);
static void lcd_default_isr_handler(void *args);
static esp_err_t panel_io_i80_register_event_callbacks(esp_lcd_panel_io_handle_t io, const esp_lcd_panel_io_callbacks_t *cbs, void *user_ctx);
struct esp_lcd_i80_bus_t {
int bus_id; // Bus ID, index from 0
portMUX_TYPE spinlock; // spinlock used to protect i80 bus members(hal, device_list, cur_trans)
lcd_hal_context_t hal; // Hal object
size_t bus_width; // Number of data lines
intr_handle_t intr; // LCD peripheral interrupt handle
esp_pm_lock_handle_t pm_lock; // Power management lock
uint8_t *format_buffer; // The driver allocates an internal buffer for DMA to do data format transformer
uint8_t *format_buffer_nc; // Non-cacheable version of format buffer
size_t resolution_hz; // LCD_CLK resolution, determined by selected clock source
size_t num_dma_nodes; // Number of DMA nodes (descriptors)
gdma_channel_handle_t dma_chan; // DMA channel handle
gdma_link_list_handle_t dma_link; // DMA link list handle
size_t int_mem_align; // Alignment for internal memory
size_t ext_mem_align; // Alignment for external memory
lcd_i80_trans_descriptor_t *cur_trans; // Current transaction
lcd_panel_io_i80_t *cur_device; // Current working device
LIST_HEAD(i80_device_list, lcd_panel_io_i80_t) device_list; // Head of i80 device list
struct {
uint32_t exclusive: 1; // Indicate whether the I80 bus is owned by one device (whose CS GPIO is not assigned) exclusively
} flags;
};
struct lcd_i80_trans_descriptor_t {
lcd_panel_io_i80_t *i80_device; // i80 device issuing this transaction
int cmd_value; // Command value
uint32_t cmd_cycles; // Command cycles
const void *data; // Data buffer
uint32_t data_length; // Data buffer size
void *user_ctx; // private data used by trans_done_cb
esp_lcd_panel_io_color_trans_done_cb_t trans_done_cb; // transaction done callback
};
struct lcd_panel_io_i80_t {
esp_lcd_panel_io_t base; // Base class of generic lcd panel io
esp_lcd_i80_bus_t *bus; // Which bus the device is attached to
int cs_gpio_num; // GPIO used for CS line
unsigned int pclk_hz; // PCLK clock frequency
size_t clock_prescale; // Prescaler coefficient, determined by user's configured PCLK frequency
QueueHandle_t trans_queue; // Transaction queue, transactions in this queue are pending for scheduler to dispatch
QueueHandle_t done_queue; // Transaction done queue, transactions in this queue are finished but not recycled by the caller
size_t queue_size; // Size of transaction queue
size_t num_trans_inflight; // Number of transactions that are undergoing (the descriptor not recycled yet)
int lcd_cmd_bits; // Bit width of LCD command
int lcd_param_bits; // Bit width of LCD parameter
void *user_ctx; // private data used when transfer color data
esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done; // color data trans done callback
LIST_ENTRY(lcd_panel_io_i80_t) device_list_entry; // Entry of i80 device list
struct {
unsigned int dc_idle_level: 1; // Level of DC line in IDLE phase
unsigned int dc_cmd_level: 1; // Level of DC line in CMD phase
unsigned int dc_dummy_level: 1; // Level of DC line in DUMMY phase
unsigned int dc_data_level: 1; // Level of DC line in DATA phase
} dc_levels;
struct {
unsigned int cs_active_high: 1; // Whether the CS line is active on high level
unsigned int reverse_color_bits: 1; // Reverse the data bits, D[N:0] -> D[0:N]
unsigned int swap_color_bytes: 1; // Swap adjacent two data bytes before sending out
unsigned int pclk_active_neg: 1; // The display will write data lines when there's a falling edge on WR line
unsigned int pclk_idle_low: 1; // The WR line keeps at low level in IDLE phase
} flags;
lcd_i80_trans_descriptor_t trans_pool[]; // Transaction pool
};
esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lcd_i80_bus_handle_t *ret_bus)
{
#if CONFIG_LCD_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
esp_lcd_i80_bus_t *bus = NULL;
ESP_RETURN_ON_FALSE(bus_config && ret_bus, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// although LCD_CAM can support up to 24 data lines, we restrict users to only use 8 or 16 bit width
ESP_RETURN_ON_FALSE(bus_config->bus_width == 8 || bus_config->bus_width == 16, ESP_ERR_INVALID_ARG,
TAG, "invalid bus width:%d", bus_config->bus_width);
// allocate i80 bus memory
bus = heap_caps_calloc(1, sizeof(esp_lcd_i80_bus_t), LCD_I80_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(bus, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 bus");
size_t num_dma_nodes = bus_config->max_transfer_bytes / LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE + 1;
// create DMA link list
gdma_link_list_config_t dma_link_config = {
.buffer_alignment = 1, // no special buffer alignment for LCD TX buffer
.item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN,
.num_items = num_dma_nodes,
.flags = {
.check_owner = true,
},
};
ESP_GOTO_ON_ERROR(gdma_new_link_list(&dma_link_config, &bus->dma_link), err, TAG, "create DMA link list failed");
bus->num_dma_nodes = num_dma_nodes;
bus->bus_width = bus_config->bus_width;
bus->bus_id = -1;
// allocate the format buffer from internal memory, with DMA capability
bus->format_buffer = heap_caps_calloc(1, LCD_I80_IO_FORMAT_BUF_SIZE,
MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(bus->format_buffer, ESP_ERR_NO_MEM, err, TAG, "no mem for format buffer");
// if the buffer is behind the cache, write it back to the underlying memory
if (cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA) > 0) {
esp_cache_msync(bus->format_buffer, LCD_I80_IO_FORMAT_BUF_SIZE,
ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED);
}
bus->format_buffer_nc = LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(bus->format_buffer);
// register to platform
int bus_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_I80, bus);
ESP_GOTO_ON_FALSE(bus_id >= 0, ESP_ERR_NOT_FOUND, err, TAG, "no free i80 bus slot");
bus->bus_id = bus_id;
// enable APB to access LCD registers
PERIPH_RCC_ACQUIRE_ATOMIC(lcd_periph_i80_signals.buses[bus_id].module, ref_count) {
if (ref_count == 0) {
lcd_ll_enable_bus_clock(bus_id, true);
lcd_ll_reset_register(bus_id);
}
}
// initialize HAL layer, so we can call LL APIs later
lcd_hal_init(&bus->hal, bus_id);
LCD_CLOCK_SRC_ATOMIC() {
lcd_ll_enable_clock(bus->hal.dev, true);
}
// set peripheral clock resolution
ret = lcd_i80_select_periph_clock(bus, bus_config->clk_src);
ESP_GOTO_ON_ERROR(ret, err, TAG, "select periph clock %d failed", bus_config->clk_src);
// reset peripheral and FIFO after we select a correct clock source
lcd_ll_reset(bus->hal.dev);
lcd_ll_fifo_reset(bus->hal.dev);
// install interrupt service, (LCD peripheral shares the same interrupt source with Camera peripheral with different mask)
// interrupt is disabled by default
int isr_flags = LCD_I80_INTR_ALLOC_FLAGS | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED;
ret = esp_intr_alloc_intrstatus(lcd_periph_i80_signals.buses[bus_id].irq_id, isr_flags,
(uint32_t)lcd_ll_get_interrupt_status_reg(bus->hal.dev),
LCD_LL_EVENT_TRANS_DONE, lcd_default_isr_handler, bus, &bus->intr);
ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed");
lcd_ll_enable_interrupt(bus->hal.dev, LCD_LL_EVENT_TRANS_DONE, false); // disable all interrupts
lcd_ll_clear_interrupt_status(bus->hal.dev, UINT32_MAX); // clear pending interrupt
// install DMA service
ret = lcd_i80_init_dma_link(bus, bus_config);
ESP_GOTO_ON_ERROR(ret, err, TAG, "install DMA failed");
// disable RGB-LCD mode
lcd_ll_enable_rgb_mode(bus->hal.dev, false);
// disable YUV-RGB converter
lcd_ll_enable_rgb_yuv_convert(bus->hal.dev, false);
// set how much data to read from DMA each time
lcd_ll_set_dma_read_stride(bus->hal.dev, bus->bus_width);
// sometime, we need to change the output data order: ABAB->BABA
lcd_ll_set_swizzle_mode(bus->hal.dev, LCD_LL_SWIZZLE_AB2BA);
// number of data cycles is controlled by DMA buffer size
lcd_ll_enable_output_always_on(bus->hal.dev, true);
// enable trans done interrupt
lcd_ll_enable_interrupt(bus->hal.dev, LCD_LL_EVENT_TRANS_DONE, true);
// trigger a quick "trans done" event, and wait for the interrupt line goes active
// this could ensure we go into ISR handler next time we call `esp_intr_enable`
lcd_periph_trigger_quick_trans_done_event(bus);
// configure GPIO
ret = lcd_i80_bus_configure_gpio(bus, bus_config);
ESP_GOTO_ON_ERROR(ret, err, TAG, "configure GPIO failed");
// fill other i80 bus runtime parameters
LIST_INIT(&bus->device_list); // initialize device list head
bus->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
*ret_bus = bus;
ESP_LOGD(TAG, "new i80 bus(%d) @%p, %zu dma nodes", bus_id, bus, bus->num_dma_nodes);
return ESP_OK;
err:
if (bus) {
if (bus->intr) {
esp_intr_free(bus->intr);
}
if (bus->dma_chan) {
gdma_disconnect(bus->dma_chan);
gdma_del_channel(bus->dma_chan);
}
if (bus->dma_link) {
gdma_del_link_list(bus->dma_link);
}
if (bus->bus_id >= 0) {
PERIPH_RCC_RELEASE_ATOMIC(lcd_periph_i80_signals.buses[bus->bus_id].module, ref_count) {
if (ref_count == 0) {
lcd_ll_enable_bus_clock(bus->bus_id, false);
}
}
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus->bus_id);
}
if (bus->format_buffer) {
free(bus->format_buffer);
}
if (bus->pm_lock) {
esp_pm_lock_delete(bus->pm_lock);
}
free(bus);
}
return ret;
}
esp_err_t esp_lcd_del_i80_bus(esp_lcd_i80_bus_handle_t bus)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(bus, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
ESP_GOTO_ON_FALSE(LIST_EMPTY(&bus->device_list), ESP_ERR_INVALID_STATE, err, TAG, "device list not empty");
int bus_id = bus->bus_id;
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus_id);
PERIPH_RCC_RELEASE_ATOMIC(lcd_periph_i80_signals.buses[bus_id].module, ref_count) {
if (ref_count == 0) {
lcd_ll_enable_bus_clock(bus_id, false);
}
}
gdma_disconnect(bus->dma_chan);
gdma_del_channel(bus->dma_chan);
esp_intr_free(bus->intr);
free(bus->format_buffer);
if (bus->pm_lock) {
esp_pm_lock_delete(bus->pm_lock);
}
gdma_del_link_list(bus->dma_link);
free(bus);
ESP_LOGD(TAG, "del i80 bus(%d)", bus_id);
err:
return ret;
}
esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_panel_io_i80_config_t *io_config, esp_lcd_panel_io_handle_t *ret_io)
{
esp_err_t ret = ESP_OK;
lcd_panel_io_i80_t *i80_device = NULL;
bool bus_exclusive = false;
ESP_GOTO_ON_FALSE(bus && io_config && ret_io, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
// check if the bus has been configured as exclusive
portENTER_CRITICAL(&bus->spinlock);
if (!bus->flags.exclusive) {
bus->flags.exclusive = io_config->cs_gpio_num < 0;
} else {
bus_exclusive = true;
}
portEXIT_CRITICAL(&bus->spinlock);
ESP_GOTO_ON_FALSE(!bus_exclusive, ESP_ERR_INVALID_STATE, err, TAG, "bus has been exclusively owned by device");
// check if pixel clock setting is valid
uint32_t pclk_prescale = bus->resolution_hz / io_config->pclk_hz;
ESP_GOTO_ON_FALSE(pclk_prescale > 0 && pclk_prescale <= LCD_LL_PCLK_DIV_MAX, ESP_ERR_NOT_SUPPORTED, err, TAG,
"prescaler can't satisfy PCLK clock %"PRIu32"Hz", io_config->pclk_hz);
i80_device = heap_caps_calloc(1, sizeof(lcd_panel_io_i80_t) + io_config->trans_queue_depth * sizeof(lcd_i80_trans_descriptor_t), LCD_I80_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(i80_device, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 panel io");
// create two queues for i80 device
i80_device->trans_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *));
ESP_GOTO_ON_FALSE(i80_device->trans_queue, ESP_ERR_NO_MEM, err, TAG, "create trans queue failed");
i80_device->done_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *));
ESP_GOTO_ON_FALSE(i80_device->done_queue, ESP_ERR_NO_MEM, err, TAG, "create done queue failed");
// adding device to list
portENTER_CRITICAL(&bus->spinlock);
LIST_INSERT_HEAD(&bus->device_list, i80_device, device_list_entry);
portEXIT_CRITICAL(&bus->spinlock);
// we don't initialize the i80 bus at the memont, but initialize the bus when start a transaction for a new device
// so save these as i80 device runtime parameters
i80_device->bus = bus;
i80_device->lcd_cmd_bits = io_config->lcd_cmd_bits;
i80_device->lcd_param_bits = io_config->lcd_param_bits;
i80_device->queue_size = io_config->trans_queue_depth;
i80_device->clock_prescale = pclk_prescale;
i80_device->pclk_hz = bus->resolution_hz / pclk_prescale;
i80_device->dc_levels.dc_cmd_level = io_config->dc_levels.dc_cmd_level;
i80_device->dc_levels.dc_data_level = io_config->dc_levels.dc_data_level;
i80_device->dc_levels.dc_dummy_level = io_config->dc_levels.dc_dummy_level;
i80_device->dc_levels.dc_idle_level = io_config->dc_levels.dc_idle_level;
i80_device->cs_gpio_num = io_config->cs_gpio_num;
i80_device->flags.reverse_color_bits = io_config->flags.reverse_color_bits;
i80_device->flags.swap_color_bytes = io_config->flags.swap_color_bytes;
i80_device->flags.cs_active_high = io_config->flags.cs_active_high;
i80_device->flags.pclk_idle_low = io_config->flags.pclk_idle_low;
i80_device->flags.pclk_active_neg = io_config->flags.pclk_active_neg;
i80_device->on_color_trans_done = io_config->on_color_trans_done;
i80_device->user_ctx = io_config->user_ctx;
// fill panel io function table
i80_device->base.del = panel_io_i80_del;
i80_device->base.tx_param = panel_io_i80_tx_param;
i80_device->base.tx_color = panel_io_i80_tx_color;
i80_device->base.register_event_callbacks = panel_io_i80_register_event_callbacks;
// we only configure the CS GPIO as output, don't connect to the peripheral signal at the moment
// we will connect the CS GPIO to peripheral signal when switching devices in lcd_i80_switch_devices()
if (io_config->cs_gpio_num >= 0) {
gpio_set_level(io_config->cs_gpio_num, !io_config->flags.cs_active_high);
gpio_set_direction(io_config->cs_gpio_num, GPIO_MODE_OUTPUT);
gpio_func_sel(io_config->cs_gpio_num, PIN_FUNC_GPIO);
}
*ret_io = &(i80_device->base);
ESP_LOGD(TAG, "new i80 lcd panel io @%p on bus(%d)", i80_device, bus->bus_id);
return ESP_OK;
err:
if (i80_device) {
if (i80_device->trans_queue) {
vQueueDelete(i80_device->trans_queue);
}
if (i80_device->done_queue) {
vQueueDelete(i80_device->done_queue);
}
free(i80_device);
}
return ret;
}
static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io)
{
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = i80_device->bus;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
// wait all pending transaction to finish
size_t num_trans_inflight = i80_device->num_trans_inflight;
for (size_t i = 0; i < num_trans_inflight; i++) {
ESP_RETURN_ON_FALSE(xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE,
ESP_FAIL, TAG, "recycle inflight transactions failed");
i80_device->num_trans_inflight--;
}
// remove from device list
portENTER_CRITICAL(&bus->spinlock);
LIST_REMOVE(i80_device, device_list_entry);
portEXIT_CRITICAL(&bus->spinlock);
// reset CS to normal GPIO
if (i80_device->cs_gpio_num >= 0) {
gpio_reset_pin(i80_device->cs_gpio_num);
}
ESP_LOGD(TAG, "del i80 lcd panel io @%p", i80_device);
vQueueDelete(i80_device->trans_queue);
vQueueDelete(i80_device->done_queue);
free(i80_device);
return ESP_OK;
}
static esp_err_t panel_io_i80_register_event_callbacks(esp_lcd_panel_io_handle_t io, const esp_lcd_panel_io_callbacks_t *cbs, void *user_ctx)
{
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
if (i80_device->on_color_trans_done != NULL) {
ESP_LOGW(TAG, "Callback on_color_trans_done was already set and now it was overwritten!");
}
i80_device->on_color_trans_done = cbs->on_color_trans_done;
i80_device->user_ctx = user_ctx;
return ESP_OK;
}
static void i80_lcd_prepare_cmd_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, void *lcd_cmd)
{
uint8_t *from = (uint8_t *)lcd_cmd;
if (bus->bus_width < i80_device->lcd_cmd_bits) {
// LCD is big-endian, e.g. to send command 0x1234, byte 0x12 should appear on the bus first
// However, the i80 peripheral will send 0x34 first, so we reversed the order below
int start = 0;
int end = i80_device->lcd_cmd_bits / 8 - 1;
lcd_com_reverse_buffer_bytes(from, start, end);
}
}
static uint32_t i80_lcd_prepare_param_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, const void *lcd_param, size_t param_size)
{
int param_per_size = i80_device->lcd_param_bits / 8;
int param_num = param_size / param_per_size;
const uint8_t *from = (const uint8_t *)lcd_param;
// we use non-cacheable address to write to the format buffer, for simplicity
uint8_t *to = bus->format_buffer_nc;
uint8_t step = bus->bus_width / 8;
int param_cycle = i80_device->lcd_param_bits / bus->bus_width;
// in case bus_width=16 and param_bits=8, we still need 1 param_cycle
if (param_cycle * bus->bus_width < i80_device->lcd_param_bits) {
param_cycle++;
}
int ele_cycles = param_cycle * param_num;
int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_param_bits) / 8;
int cnt_from = 0;
// expand the width of parameters when necessary
for (int i = 0; i < ele_cycles; i++) {
for (int j = 0; j < bytes_to_copy; j++) {
to[j] = from[cnt_from++];
}
to += step;
}
return to - bus->format_buffer_nc;
}
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size)
{
lcd_panel_io_i80_t *next_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = next_device->bus;
lcd_panel_io_i80_t *cur_device = bus->cur_device;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(param_size <= (bus->num_dma_nodes * LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "parameter bytes too long, enlarge max_transfer_bytes");
assert(param_size <= LCD_I80_IO_FORMAT_BUF_SIZE && "format buffer too small, increase LCD_I80_IO_FORMAT_BUF_SIZE");
uint32_t cmd_cycles = next_device->lcd_cmd_bits / bus->bus_width;
// in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle
if (cmd_cycles * bus->bus_width < next_device->lcd_cmd_bits) {
cmd_cycles++;
}
i80_lcd_prepare_cmd_buffer(bus, next_device, &lcd_cmd);
uint32_t param_len = i80_lcd_prepare_param_buffer(bus, next_device, param, param_size);
// wait all pending transaction in the queue to finish
size_t num_trans_inflight = next_device->num_trans_inflight;
for (size_t i = 0; i < num_trans_inflight; i++) {
ESP_RETURN_ON_FALSE(xQueueReceive(next_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE,
ESP_FAIL, TAG, "recycle inflight transactions failed");
next_device->num_trans_inflight--;
}
uint32_t intr_status = lcd_ll_get_interrupt_status(bus->hal.dev);
lcd_ll_clear_interrupt_status(bus->hal.dev, intr_status);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
// set data format
lcd_ll_reverse_dma_data_bit_order(bus->hal.dev, false);
// whether to swap the adjacent data bytes
lcd_ll_enable_swizzle(bus->hal.dev, next_device->lcd_param_bits > bus->bus_width);
bus->cur_trans = NULL;
bus->cur_device = next_device;
// package a transaction
trans_desc = &next_device->trans_pool[0];
trans_desc->i80_device = next_device;
trans_desc->cmd_cycles = cmd_cycles;
trans_desc->cmd_value = lcd_cmd;
// either the param is NULL or the param_size is zero, means there isn't a data phase in this transaction
trans_desc->data = (param && param_len) ? bus->format_buffer : NULL;
trans_desc->data_length = trans_desc->data ? param_len : 0;
trans_desc->trans_done_cb = NULL; // no callback for parameter transaction
// mount data to DMA links
gdma_buffer_mount_config_t mount_config = {
.buffer = (void *)trans_desc->data,
.length = trans_desc->data_length,
.flags = {
.mark_eof = true,
.mark_final = true, // singly link list, mark final descriptor
}
};
gdma_link_mount_buffers(bus->dma_link, 0, &mount_config, 1, NULL);
// increase the pm lock reference count before starting a new transaction
if (bus->pm_lock) {
esp_pm_lock_acquire(bus->pm_lock);
}
lcd_start_transaction(bus, trans_desc);
// polling the trans done event, but don't clear the event status
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {}
// decrease pm lock reference count
if (bus->pm_lock) {
esp_pm_lock_release(bus->pm_lock);
}
return ESP_OK;
}
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size)
{
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = i80_device->bus;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(color_size <= (bus->num_dma_nodes * LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "color bytes too long, enlarge max_transfer_bytes");
uint32_t cache_line_size = 0;
if (esp_ptr_external_ram(color)) {
// check alignment
ESP_RETURN_ON_FALSE(((uint32_t)color & (bus->ext_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color address not aligned");
ESP_RETURN_ON_FALSE((color_size & (bus->ext_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color size not aligned");
cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA);
} else {
// check alignment
ESP_RETURN_ON_FALSE(((uint32_t)color & (bus->int_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color address not aligned");
ESP_RETURN_ON_FALSE((color_size & (bus->int_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color size not aligned");
cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
}
if (cache_line_size > 0) {
// flush data from cache to the physical memory
esp_cache_msync((void *)color, color_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED);
}
// in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle
uint32_t cmd_cycles = i80_device->lcd_cmd_bits / bus->bus_width;
if (cmd_cycles * bus->bus_width < i80_device->lcd_cmd_bits) {
cmd_cycles++;
}
i80_lcd_prepare_cmd_buffer(bus, i80_device, &lcd_cmd);
if (i80_device->num_trans_inflight < i80_device->queue_size) {
trans_desc = &i80_device->trans_pool[i80_device->num_trans_inflight];
} else {
// transaction pool has used up, recycle one from done_queue
ESP_RETURN_ON_FALSE(xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE,
ESP_FAIL, TAG, "recycle inflight transactions failed");
i80_device->num_trans_inflight--;
}
trans_desc->i80_device = i80_device;
trans_desc->cmd_cycles = cmd_cycles;
trans_desc->cmd_value = lcd_cmd;
trans_desc->data = color;
trans_desc->data_length = color_size;
trans_desc->trans_done_cb = i80_device->on_color_trans_done;
trans_desc->user_ctx = i80_device->user_ctx;
// send transaction to trans_queue
xQueueSend(i80_device->trans_queue, &trans_desc, portMAX_DELAY);
i80_device->num_trans_inflight++;
// enable interrupt and go into isr handler, where we fetch the transactions from trans_queue and start it
// we will go into `lcd_default_isr_handler` almost at once, because the "trans done" event is active at the moment
esp_intr_enable(bus->intr);
return ESP_OK;
}
static esp_err_t lcd_i80_select_periph_clock(esp_lcd_i80_bus_handle_t bus, lcd_clock_source_t clk_src)
{
// get clock source frequency
uint32_t src_clk_hz = 0;
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &src_clk_hz),
TAG, "get clock source frequency failed");
LCD_CLOCK_SRC_ATOMIC() {
lcd_ll_select_clk_src(bus->hal.dev, clk_src);
// force to use integer division, as fractional division might lead to clock jitter
lcd_ll_set_group_clock_coeff(bus->hal.dev, LCD_PERIPH_CLOCK_PRE_SCALE, 0, 0);
}
// save the resolution of the i80 bus
bus->resolution_hz = src_clk_hz / LCD_PERIPH_CLOCK_PRE_SCALE;
// create pm lock based on different clock source
// clock sources like PLL and XTAL will be turned off in light sleep
#if CONFIG_PM_ENABLE
ESP_RETURN_ON_ERROR(esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i80_bus_lcd", &bus->pm_lock), TAG, "create pm lock failed");
#endif
return ESP_OK;
}
static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config)
{
esp_err_t ret = ESP_OK;
// alloc DMA channel and connect to LCD peripheral
gdma_channel_alloc_config_t dma_chan_config = {
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ret = LCD_GDMA_NEW_CHANNEL(&dma_chan_config, &bus->dma_chan);
ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc DMA channel failed");
gdma_connect(bus->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0));
gdma_strategy_config_t strategy_config = {
.auto_update_desc = true,
.owner_check = true
};
gdma_apply_strategy(bus->dma_chan, &strategy_config);
// config DMA transfer parameters
gdma_transfer_config_t trans_cfg = {
.max_data_burst_size = bus_config->dma_burst_size ? bus_config->dma_burst_size : 16, // Enable DMA burst transfer for better performance
.access_ext_mem = true, // the LCD can carry pixel buffer from the external memory
};
ESP_GOTO_ON_ERROR(gdma_config_transfer(bus->dma_chan, &trans_cfg), err, TAG, "config DMA transfer failed");
gdma_get_alignment_constraints(bus->dma_chan, &bus->int_mem_align, &bus->ext_mem_align);
return ESP_OK;
err:
if (bus->dma_chan) {
gdma_del_channel(bus->dma_chan);
}
return ret;
}
void *esp_lcd_i80_alloc_draw_buffer(esp_lcd_panel_io_handle_t io, size_t size, uint32_t caps)
{
ESP_RETURN_ON_FALSE(io, NULL, TAG, "invalid argument");
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = i80_device->bus;
void *buf = NULL;
// alloc from external memory
if (caps & MALLOC_CAP_SPIRAM) {
buf = heap_caps_aligned_calloc(bus->ext_mem_align, 1, size, MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM | MALLOC_CAP_DMA);
} else {
buf = heap_caps_aligned_calloc(bus->int_mem_align, 1, size, MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
}
return buf;
}
static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config)
{
int bus_id = bus->bus_id;
// check validation of GPIO number
bool valid_gpio = (bus_config->wr_gpio_num >= 0) && (bus_config->dc_gpio_num >= 0);
for (size_t i = 0; i < bus_config->bus_width; i++) {
valid_gpio = valid_gpio && (bus_config->data_gpio_nums[i] >= 0);
}
if (!valid_gpio) {
return ESP_ERR_INVALID_ARG;
}
// Set the number of output data lines
lcd_ll_set_data_wire_width(bus->hal.dev, bus_config->bus_width);
// connect peripheral signals via GPIO matrix
for (size_t i = 0; i < bus_config->bus_width; i++) {
gpio_set_direction(bus_config->data_gpio_nums[i], GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->data_gpio_nums[i], lcd_periph_i80_signals.buses[bus_id].data_sigs[i], false, false);
gpio_func_sel(bus_config->data_gpio_nums[i], PIN_FUNC_GPIO);
}
gpio_set_direction(bus_config->dc_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->dc_gpio_num, lcd_periph_i80_signals.buses[bus_id].dc_sig, false, false);
gpio_func_sel(bus_config->dc_gpio_num, PIN_FUNC_GPIO);
gpio_set_direction(bus_config->wr_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->wr_gpio_num, lcd_periph_i80_signals.buses[bus_id].wr_sig, false, false);
gpio_func_sel(bus_config->wr_gpio_num, PIN_FUNC_GPIO);
return ESP_OK;
}
static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus)
{
// trigger a quick interrupt event by a dummy transaction, wait the LCD interrupt line goes active
// next time when esp_intr_enable is invoked, we can go into interrupt handler immediately
// where we dispatch transactions for i80 devices
lcd_ll_set_phase_cycles(bus->hal.dev, 0, 1, 0);
lcd_ll_start(bus->hal.dev);
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {}
}
static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descriptor_t *trans_desc)
{
// by default, the dummy phase is disabled because it's not common for most LCDs
uint32_t dummy_cycles = 0;
uint32_t cmd_cycles = trans_desc->cmd_value >= 0 ? trans_desc->cmd_cycles : 0;
// Number of data phase cycles are controlled by DMA buffer length, we only need to enable/disable the phase here
uint32_t data_cycles = trans_desc->data ? 1 : 0;
if (trans_desc->cmd_value >= 0) {
lcd_ll_set_command(bus->hal.dev, bus->bus_width, trans_desc->cmd_value);
}
lcd_ll_set_phase_cycles(bus->hal.dev, cmd_cycles, dummy_cycles, data_cycles);
lcd_ll_set_blank_cycles(bus->hal.dev, 1, 1);
// reset FIFO before starting a new transaction
lcd_ll_fifo_reset(bus->hal.dev);
if (trans_desc->data) { // some specific LCD commands can have no parameters
gdma_start(bus->dma_chan, gdma_link_get_head_addr(bus->dma_link));
// delay 1us is sufficient for DMA to pass data to LCD FIFO
// in fact, this is only needed when LCD pixel clock is set too high
esp_rom_delay_us(1);
}
lcd_ll_start(bus->hal.dev);
}
static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device)
{
// we assume the next_device and cur_device are attached to the same bus
esp_lcd_i80_bus_t *bus = next_device->bus;
if (next_device != cur_device) {
// reconfigure PCLK for the new device
lcd_ll_set_pixel_clock_prescale(bus->hal.dev, next_device->clock_prescale);
lcd_ll_set_clock_idle_level(bus->hal.dev, !next_device->flags.pclk_idle_low);
lcd_ll_set_pixel_clock_edge(bus->hal.dev, next_device->flags.pclk_active_neg);
// configure DC line level for the new device
lcd_ll_set_dc_level(bus->hal.dev, next_device->dc_levels.dc_idle_level, next_device->dc_levels.dc_cmd_level,
next_device->dc_levels.dc_dummy_level, next_device->dc_levels.dc_data_level);
if (cur_device && cur_device->cs_gpio_num >= 0) {
// disconnect current CS GPIO from peripheral signal
esp_rom_gpio_connect_out_signal(cur_device->cs_gpio_num, SIG_GPIO_OUT_IDX, false, false);
}
if (next_device->cs_gpio_num >= 0) {
// connect CS signal to the new device
esp_rom_gpio_connect_out_signal(next_device->cs_gpio_num, lcd_periph_i80_signals.buses[bus->bus_id].cs_sig,
next_device->flags.cs_active_high, false);
}
}
}
IRAM_ATTR static void lcd_default_isr_handler(void *args)
{
esp_lcd_i80_bus_t *bus = (esp_lcd_i80_bus_t *)args;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
lcd_panel_io_i80_t *cur_device = NULL;
lcd_panel_io_i80_t *next_device = NULL;
BaseType_t high_task_woken = pdFALSE;
bool need_yield = false;
uint32_t intr_status = lcd_ll_get_interrupt_status(bus->hal.dev);
if (intr_status & LCD_LL_EVENT_TRANS_DONE) {
// disable interrupt temporarily, only re-enable when there be remained transaction in the queue
esp_intr_disable(bus->intr);
trans_desc = bus->cur_trans; // the finished transaction
cur_device = bus->cur_device;// the working device
// process finished transaction
if (trans_desc) {
assert(trans_desc->i80_device == cur_device && "transaction device mismatch");
// decrease pm lock reference count
if (bus->pm_lock) {
esp_pm_lock_release(bus->pm_lock);
}
// device callback
if (trans_desc->trans_done_cb) {
if (trans_desc->trans_done_cb(&cur_device->base, NULL, trans_desc->user_ctx)) {
need_yield = true;
}
}
// move transaction to done_queue
// there won't be case that will overflow the queue, so skip checking the return value
high_task_woken = pdFALSE;
xQueueSendFromISR(cur_device->done_queue, &trans_desc, &high_task_woken);
if (high_task_woken == pdTRUE) {
need_yield = true;
}
bus->cur_trans = NULL;
}
// fetch transactions from devices' trans_queue
// Note: the first registered device will have the highest priority to be scheduled
LIST_FOREACH(next_device, &bus->device_list, device_list_entry) {
high_task_woken = pdFALSE;
if (xQueueReceiveFromISR(next_device->trans_queue, &trans_desc, &high_task_woken) == pdTRUE) {
if (high_task_woken == pdTRUE) {
need_yield = true;
}
// sanity check
assert(trans_desc);
// only clear the interrupt status when we're sure there still remains transaction to handle
lcd_ll_clear_interrupt_status(bus->hal.dev, intr_status);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
// only reverse data bit/bytes for color data
lcd_ll_reverse_dma_data_bit_order(bus->hal.dev, next_device->flags.reverse_color_bits);
lcd_ll_enable_swizzle(bus->hal.dev, next_device->flags.swap_color_bytes);
bus->cur_trans = trans_desc;
bus->cur_device = next_device;
// mount data to DMA links
gdma_buffer_mount_config_t mount_config = {
.buffer = (void *)trans_desc->data,
.length = trans_desc->data_length,
.flags = {
.mark_eof = true,
.mark_final = true, // singly link list, mark final descriptor
}
};
gdma_link_mount_buffers(bus->dma_link, 0, &mount_config, 1, NULL);
// enable interrupt again, because the new transaction can trigger new trans done event
esp_intr_enable(bus->intr);
// increase the pm lock reference count before starting a new transaction
if (bus->pm_lock) {
esp_pm_lock_acquire(bus->pm_lock);
}
lcd_start_transaction(bus, trans_desc);
break; // exit for-each loop
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}