esp-idf/components/driver/test/test_adc_dma.c
Michael (XIAO Xufeng) 2b83418141 adc: add fallback calibration method
Also:
1. Separate static configuration into init phase to improve
performance
2. Add a init code config layer to avoid duplicated configuration
3. Add a HW_CALIBRATION_V1 caps
2021-01-25 20:30:42 +08:00

287 lines
8.2 KiB
C

// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include <string.h>
#include "test_utils.h"
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)
//API only supported for C3 now.
#include "driver/adc.h"
#include "esp_adc_cal.h"
#include "esp_log.h"
#define TEST_COUNT 4096
#define MAX_ARRAY_SIZE 4096
#define TEST_ATTEN ADC_ATTEN_MAX //Set to ADC_ATTEN_*db to test a single attenuation only
static int s_adc_count[MAX_ARRAY_SIZE]={};
static int s_adc_offset = -1;
static int insert_point(uint32_t value)
{
const bool fixed_size = true;
if (s_adc_offset < 0) {
if (fixed_size) {
TEST_ASSERT_GREATER_OR_EQUAL(4096, MAX_ARRAY_SIZE);
s_adc_offset = 0; //Fixed to 0 because the array can hold all the data in 12 bits
} else {
s_adc_offset = MAX((int)value - MAX_ARRAY_SIZE/2, 0);
}
}
if (!fixed_size && (value < s_adc_offset || value >= s_adc_offset + MAX_ARRAY_SIZE)) {
TEST_ASSERT_GREATER_OR_EQUAL(s_adc_offset, value);
TEST_ASSERT_LESS_THAN(s_adc_offset + MAX_ARRAY_SIZE, value);
}
s_adc_count[value - s_adc_offset] ++;
return value - s_adc_offset;
}
static void reset_array(void)
{
memset(s_adc_count, 0, sizeof(s_adc_count));
s_adc_offset = -1;
}
static uint32_t get_average(void)
{
uint32_t sum = 0;
int count = 0;
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
sum += s_adc_count[i] * (s_adc_offset+i);
count += s_adc_count[i];
}
return sum/count;
}
static void print_summary(bool figure)
{
const int MAX_WIDTH=20;
int max_count = 0;
int start = -1;
int end = -1;
uint32_t sum = 0;
int count = 0;
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
if (s_adc_count[i] > max_count) {
max_count = s_adc_count[i];
}
if (s_adc_count[i] > 0 && start < 0) {
start = i;
}
if (s_adc_count[i] > 0) {
end = i;
}
count += s_adc_count[i];
sum += s_adc_count[i] * (s_adc_offset+i);
}
if (figure) {
for (int i = start; i <= end; i++) {
printf("%4d ", i+s_adc_offset);
int count = s_adc_count[i] * MAX_WIDTH / max_count;
for (int j = 0; j < count; j++) {
putchar('|');
}
printf(" %d\n", s_adc_count[i]);
}
}
float average = (float)sum/count;
float variation_square = 0;
for (int i = start; i <= end; i ++) {
if (s_adc_count[i] == 0) {
continue;
}
float delta = i + s_adc_offset - average;
variation_square += (delta * delta) * s_adc_count[i];
}
printf("%d points.\n", count);
printf("average: %.1f\n", (float)sum/count);
printf("std: %.2f\n", sqrt(variation_square/count));
}
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num, adc_atten_t atten)
{
adc_digi_init_config_t adc_dma_config = {
.max_store_buf_size = TEST_COUNT*2,
.conv_num_each_intr = 128,
.dma_chan = SOC_GDMA_ADC_DMA_CHANNEL,
.adc1_chan_mask = adc1_chan_mask,
.adc2_chan_mask = adc2_chan_mask,
};
TEST_ESP_OK(adc_digi_initialize(&adc_dma_config));
adc_digi_pattern_table_t adc_pattern[10] = {0};
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.sample_freq_hz = 83333,
};
dig_cfg.adc_pattern_len = channel_num;
for (int i = 0; i < channel_num; i++) {
uint8_t unit = ((channel[i] >> 3) & 0x1);
uint8_t ch = channel[i] & 0x7;
adc_pattern[i].atten = atten;
adc_pattern[i].channel = ch;
adc_pattern[i].unit = unit;
}
dig_cfg.adc_pattern = adc_pattern;
TEST_ESP_OK(adc_digi_controller_config(&dig_cfg));
}
TEST_CASE("test_adc_dma", "[adc][ignore][manual]")
{
uint16_t adc1_chan_mask = BIT(2);
uint16_t adc2_chan_mask = 0;
adc_channel_t channel[1] = {ADC1_CHANNEL_2};
adc_atten_t target_atten = TEST_ATTEN;
const int output_data_size = sizeof(adc_digi_output_data_t);
int buffer_size = TEST_COUNT*output_data_size;
uint8_t* read_buf = malloc(buffer_size);
TEST_ASSERT_NOT_NULL(read_buf);
adc_atten_t atten;
bool print_figure;
if (target_atten == ADC_ATTEN_MAX) {
atten = ADC_ATTEN_DB_0;
target_atten = ADC_ATTEN_DB_11;
print_figure = false;
} else {
atten = target_atten;
print_figure = true;
}
while (1) {
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
memset(read_buf, 0xce, buffer_size);
bool do_calibration = false;
esp_adc_cal_characteristics_t chan1_char = {};
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
do_calibration = true;
}
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t), atten);
adc_digi_start();
int remain_count = TEST_COUNT;
while (remain_count) {
int already_got = TEST_COUNT - remain_count;
uint32_t ret_num;
TEST_ESP_OK(adc_digi_read_bytes(read_buf + already_got*output_data_size,
remain_count*output_data_size, &ret_num, ADC_MAX_DELAY));
TEST_ASSERT((ret_num % output_data_size) == 0);
remain_count -= ret_num / output_data_size;
}
adc_digi_output_data_t *p = (void*)read_buf;
reset_array();
for (int i = 0; i < TEST_COUNT; i++) {
insert_point(p[i].type2.data);
}
print_summary(print_figure);
if (do_calibration) {
uint32_t raw = get_average();
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
printf("Voltage = %d mV\n", voltage_mv);
}
adc_digi_stop();
TEST_ESP_OK(adc_digi_deinitialize());
if (atten == target_atten) {
break;
}
atten++;
}
free(read_buf);
}
TEST_CASE("test_adc_single", "[adc][ignore][manual]")
{
adc_atten_t target_atten = TEST_ATTEN;
adc_atten_t atten;
bool print_figure;
if (target_atten == ADC_ATTEN_MAX) {
atten = ADC_ATTEN_DB_0;
target_atten = ADC_ATTEN_DB_11;
print_figure = false;
} else {
atten = target_atten;
print_figure = true;
}
adc1_config_width(ADC_WIDTH_BIT_12);
while (1) {
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
adc1_config_channel_atten(ADC1_CHANNEL_2, atten);
bool do_calibration = false;
esp_adc_cal_characteristics_t chan1_char = {};
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
do_calibration = true;
}
const int test_count = TEST_COUNT;
adc1_channel_t channel = ADC1_CHANNEL_2;
while (1) {
reset_array();
for (int i = 0; i < test_count; i++) {
uint32_t raw = adc1_get_raw(channel);
insert_point(raw);
}
print_summary(print_figure);
break;
}
if (do_calibration) {
uint32_t raw = get_average();
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
printf("Voltage = %d mV\n", voltage_mv);
}
if (atten == target_atten) {
break;
}
atten++;
}
}
#endif