Wang Meng Yang d4552c6274 Merge branch 'bugfix/bt_bss_in_extram' into 'master'
BT: Fix non-existent linker symbol when ESP_ALLOW_BSS_SEG_EXTERNAL_MEMORY enabled

Closes IDFGH-9017

See merge request espressif/esp-idf!21790
2024-04-12 08:57:10 +08:00

1419 lines
45 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "esp_random.h"
#include "esp_heap_caps.h"
#include "esp_heap_caps_init.h"
#include "esp_mac.h"
#include "sdkconfig.h"
#include "nimble/nimble_port.h"
#include "nimble/nimble_port_freertos.h"
#include "esp_private/esp_modem_clock.h"
#ifdef ESP_PLATFORM
#include "esp_log.h"
#endif // ESP_PLATFORM
#ifdef CONFIG_ESP_COEX_ENABLED
#include "private/esp_coexist_internal.h"
#endif // CONFIG_ESP_COEX_ENABLED
#include "nimble/nimble_npl_os.h"
#include "nimble/ble_hci_trans.h"
#include "os/endian.h"
#include "esp_bt.h"
#include "esp_intr_alloc.h"
#include "esp_sleep.h"
#include "esp_pm.h"
#include "esp_phy_init.h"
#include "esp_private/periph_ctrl.h"
#include "hci_uart.h"
#include "bt_osi_mem.h"
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
#include "esp_private/sleep_modem.h"
#include "esp_private/sleep_retention.h"
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
#ifdef CONFIG_BT_BLUEDROID_ENABLED
#include "hci/hci_hal.h"
#endif // CONFIG_BT_BLUEDROID_ENABLED
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_private/periph_ctrl.h"
#include "esp_sleep.h"
#include "soc/rtc.h"
/* Macro definition
************************************************************************
*/
#define NIMBLE_PORT_LOG_TAG "BLE_INIT"
#define OSI_COEX_VERSION 0x00010006
#define OSI_COEX_MAGIC_VALUE 0xFADEBEAD
#define EXT_FUNC_VERSION 0x20221122
#define EXT_FUNC_MAGIC_VALUE 0xA5A5A5A5
#define BT_ASSERT_PRINT ets_printf
#ifdef CONFIG_BT_BLUEDROID_ENABLED
/* ACL_DATA_MBUF_LEADINGSPCAE: The leadingspace in user info header for ACL data */
#define ACL_DATA_MBUF_LEADINGSPCAE 4
#endif // CONFIG_BT_BLUEDROID_ENABLED
/* Types definition
************************************************************************
*/
struct osi_coex_funcs_t {
uint32_t _magic;
uint32_t _version;
void (* _coex_wifi_sleep_set)(bool sleep);
int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high);
void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
};
struct ext_funcs_t {
uint32_t ext_version;
int (*_esp_intr_alloc)(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle);
int (*_esp_intr_free)(void **ret_handle);
void *(* _malloc)(size_t size);
void (*_free)(void *p);
void (*_hal_uart_start_tx)(int);
int (*_hal_uart_init_cbs)(int, hci_uart_tx_char, hci_uart_tx_done, hci_uart_rx_char, void *);
int (*_hal_uart_config)(int, int32_t, uint8_t, uint8_t, uart_parity_t, uart_hw_flowcontrol_t);
int (*_hal_uart_close)(int);
void (*_hal_uart_blocking_tx)(int, uint8_t);
int (*_hal_uart_init)(int, void *);
int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param,
uint32_t prio, void *task_handle, uint32_t core_id);
void (* _task_delete)(void *task_handle);
void (*_osi_assert)(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2);
uint32_t (* _os_random)(void);
int (* _ecc_gen_key_pair)(uint8_t *public, uint8_t *priv);
int (* _ecc_gen_dh_key)(const uint8_t *remote_pub_key_x, const uint8_t *remote_pub_key_y,
const uint8_t *local_priv_key, uint8_t *dhkey);
void (* _esp_reset_rpa_moudle)(void);
uint32_t magic;
};
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
typedef void (*interface_func_t) (uint32_t len, const uint8_t*addr, bool end);
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
/* External functions or variables
************************************************************************
*/
extern int ble_osi_coex_funcs_register(struct osi_coex_funcs_t *coex_funcs);
extern int ble_controller_init(esp_bt_controller_config_t *cfg);
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
extern int r_ble_log_init_async(interface_func_t bt_controller_log_interface, bool task_create, uint8_t buffers, uint32_t *bufs_size);
extern int r_ble_log_deinit_async(void);
extern void r_ble_log_async_select_dump_buffers(uint8_t buffers);
extern void r_ble_log_async_output_dump_all(bool output);
extern void esp_panic_handler_reconfigure_wdts(uint32_t timeout_ms);
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
extern int ble_controller_deinit(void);
extern int ble_controller_enable(uint8_t mode);
extern int ble_controller_disable(void);
extern int esp_register_ext_funcs (struct ext_funcs_t *);
extern void esp_unregister_ext_funcs (void);
extern int esp_ble_ll_set_public_addr(const uint8_t *addr);
extern int esp_register_npl_funcs (struct npl_funcs_t *p_npl_func);
extern void esp_unregister_npl_funcs (void);
extern void npl_freertos_mempool_deinit(void);
extern uint32_t r_os_cputime_get32(void);
extern uint32_t r_os_cputime_ticks_to_usecs(uint32_t ticks);
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
extern const sleep_retention_entries_config_t *esp_ble_mac_retention_link_get(uint8_t *size, uint8_t extra);
extern void esp_ble_set_wakeup_overhead(uint32_t overhead);
#endif /* CONFIG_FREERTOS_USE_TICKLESS_IDLE */
extern void esp_ble_change_rtc_freq(uint32_t freq);
extern void r_ble_lll_rfmgmt_set_sleep_cb(void *s_cb, void *w_cb, void *s_arg,
void *w_arg, uint32_t us_to_enabled);
extern void r_ble_rtc_wake_up_state_clr(void);
extern int os_msys_init(void);
extern void os_msys_deinit(void);
extern int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x,
const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey);
extern int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv);
extern int ble_txpwr_set(esp_ble_enhanced_power_type_t power_type, uint16_t handle, int power_level);
extern int ble_txpwr_get(esp_ble_enhanced_power_type_t power_type, uint16_t handle);
extern int ble_get_npl_element_info(esp_bt_controller_config_t *cfg, ble_npl_count_info_t * npl_info);
extern char *ble_controller_get_compile_version(void);
extern uint32_t _bt_bss_start;
extern uint32_t _bt_bss_end;
extern uint32_t _bt_controller_bss_start;
extern uint32_t _bt_controller_bss_end;
extern uint32_t _bt_data_start;
extern uint32_t _bt_data_end;
extern uint32_t _bt_controller_data_start;
extern uint32_t _bt_controller_data_end;
/* Local Function Declaration
*********************************************************************
*/
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth,
void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void task_delete_wrapper(void *task_handle);
#if CONFIG_BT_LE_HCI_INTERFACE_USE_UART
static void hci_uart_start_tx_wrapper(int uart_no);
static int hci_uart_init_cbs_wrapper(int uart_no, hci_uart_tx_char tx_func,
hci_uart_tx_done tx_done, hci_uart_rx_char rx_func, void *arg);
static int hci_uart_config_wrapper(int uart_no, int32_t speed, uint8_t databits, uint8_t stopbits,
uart_parity_t parity, uart_hw_flowcontrol_t flow_ctl);
static int hci_uart_close_wrapper(int uart_no);
static void hci_uart_blocking_tx_wrapper(int port, uint8_t data);
static int hci_uart_init_wrapper(int uart_no, void *cfg);
#endif // CONFIG_BT_LE_HCI_INTERFACE_USE_UART
static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler,
void *arg, void **ret_handle_in);
static int esp_intr_free_wrapper(void **ret_handle);
static void osi_assert_wrapper(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2);
static uint32_t osi_random_wrapper(void);
static void esp_reset_rpa_moudle(void);
static int esp_ecc_gen_key_pair(uint8_t *pub, uint8_t *priv);
static int esp_ecc_gen_dh_key(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey);
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
static void esp_bt_controller_log_interface(uint32_t len, const uint8_t *addr, bool end);
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
/* Local variable definition
***************************************************************************
*/
/* Static variable declare */
static DRAM_ATTR esp_bt_controller_status_t ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
const static uint32_t log_bufs_size[] = {CONFIG_BT_LE_LOG_CTRL_BUF1_SIZE, CONFIG_BT_LE_LOG_HCI_BUF_SIZE, CONFIG_BT_LE_LOG_CTRL_BUF2_SIZE};
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
/* This variable tells if BLE is running */
static bool s_ble_active = false;
#ifdef CONFIG_PM_ENABLE
static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock = NULL;
#define BTDM_MIN_TIMER_UNCERTAINTY_US (200)
#endif // CONFIG_PM_ENABLE
#define BLE_RTC_DELAY_US_LIGHT_SLEEP (5100)
#define BLE_RTC_DELAY_US_MODEM_SLEEP (1500)
static const struct osi_coex_funcs_t s_osi_coex_funcs_ro = {
._magic = OSI_COEX_MAGIC_VALUE,
._version = OSI_COEX_VERSION,
._coex_wifi_sleep_set = NULL,
._coex_core_ble_conn_dyn_prio_get = NULL,
._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
};
struct ext_funcs_t ext_funcs_ro = {
.ext_version = EXT_FUNC_VERSION,
._esp_intr_alloc = esp_intr_alloc_wrapper,
._esp_intr_free = esp_intr_free_wrapper,
._malloc = bt_osi_mem_malloc_internal,
._free = bt_osi_mem_free,
#if CONFIG_BT_LE_HCI_INTERFACE_USE_UART
._hal_uart_start_tx = hci_uart_start_tx_wrapper,
._hal_uart_init_cbs = hci_uart_init_cbs_wrapper,
._hal_uart_config = hci_uart_config_wrapper,
._hal_uart_close = hci_uart_close_wrapper,
._hal_uart_blocking_tx = hci_uart_blocking_tx_wrapper,
._hal_uart_init = hci_uart_init_wrapper,
#endif //CONFIG_BT_LE_HCI_INTERFACE_USE_UART
._task_create = task_create_wrapper,
._task_delete = task_delete_wrapper,
._osi_assert = osi_assert_wrapper,
._os_random = osi_random_wrapper,
._ecc_gen_key_pair = esp_ecc_gen_key_pair,
._ecc_gen_dh_key = esp_ecc_gen_dh_key,
._esp_reset_rpa_moudle = esp_reset_rpa_moudle,
.magic = EXT_FUNC_MAGIC_VALUE,
};
static void IRAM_ATTR esp_reset_rpa_moudle(void)
{
}
static void IRAM_ATTR osi_assert_wrapper(const uint32_t ln, const char *fn,
uint32_t param1, uint32_t param2)
{
BT_ASSERT_PRINT("BLE assert: line %d in function %s, param: 0x%x, 0x%x", ln, fn, param1, param2);
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
esp_ble_controller_log_dump_all(true);
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
assert(0);
}
static uint32_t IRAM_ATTR osi_random_wrapper(void)
{
return esp_random();
}
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_set(type, status);
#endif // CONFIG_SW_COEXIST_ENABLE
}
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_clear(type, status);
#endif // CONFIG_SW_COEXIST_ENABLE
}
#ifdef CONFIG_BT_BLUEDROID_ENABLED
bool esp_vhci_host_check_send_available(void)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return false;
}
return true;
}
static struct os_mbuf *ble_hs_mbuf_gen_pkt(uint16_t leading_space)
{
struct os_mbuf *om;
int rc;
om = os_msys_get_pkthdr(0, 0);
if (om == NULL) {
return NULL;
}
if (om->om_omp->omp_databuf_len < leading_space) {
rc = os_mbuf_free_chain(om);
assert(rc == 0);
return NULL;
}
om->om_data += leading_space;
return om;
}
struct os_mbuf *ble_hs_mbuf_acl_pkt(void)
{
return ble_hs_mbuf_gen_pkt(4 + 1);
}
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return;
}
if (*(data) == DATA_TYPE_COMMAND) {
struct ble_hci_cmd *cmd = NULL;
cmd = (struct ble_hci_cmd *) ble_hci_trans_buf_alloc(BLE_HCI_TRANS_BUF_CMD);
assert(cmd);
memcpy((uint8_t *)cmd, data + 1, len - 1);
ble_hci_trans_hs_cmd_tx((uint8_t *)cmd);
}
if (*(data) == DATA_TYPE_ACL) {
struct os_mbuf *om = os_msys_get_pkthdr(len, ACL_DATA_MBUF_LEADINGSPCAE);
assert(om);
assert(os_mbuf_append(om, &data[1], len - 1) == 0);
ble_hci_trans_hs_acl_tx(om);
}
}
esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_FAIL;
}
ble_hci_trans_cfg_hs(ble_hs_hci_rx_evt, NULL, ble_hs_rx_data, NULL);
return ESP_OK;
}
#endif // CONFIG_BT_BLUEDROID_ENABLED
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth,
void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle,
(core_id < CONFIG_FREERTOS_NUMBER_OF_CORES ? core_id : tskNO_AFFINITY));
}
static void task_delete_wrapper(void *task_handle)
{
vTaskDelete(task_handle);
}
static int esp_ecc_gen_key_pair(uint8_t *pub, uint8_t *priv)
{
int rc = -1;
#if CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
rc = ble_sm_alg_gen_key_pair(pub, priv);
#endif // CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
return rc;
}
static int esp_ecc_gen_dh_key(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey)
{
int rc = -1;
#if CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
rc = ble_sm_alg_gen_dhkey(peer_pub_key_x, peer_pub_key_y, our_priv_key, out_dhkey);
#endif // CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
return rc;
}
#ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART
static void hci_uart_start_tx_wrapper(int uart_no)
{
hci_uart_start_tx(uart_no);
}
static int hci_uart_init_cbs_wrapper(int uart_no, hci_uart_tx_char tx_func,
hci_uart_tx_done tx_done, hci_uart_rx_char rx_func, void *arg)
{
int rc = -1;
rc = hci_uart_init_cbs(uart_no, tx_func, tx_done, rx_func, arg);
return rc;
}
static int hci_uart_config_wrapper(int port_num, int32_t baud_rate, uint8_t data_bits,
uint8_t stop_bits, uart_parity_t parity,
uart_hw_flowcontrol_t flow_ctl)
{
int rc = -1;
rc = hci_uart_config(port_num, baud_rate, data_bits, stop_bits, parity, flow_ctl);
return rc;
}
static int hci_uart_close_wrapper(int uart_no)
{
int rc = -1;
rc = hci_uart_close(uart_no);
return rc;
}
static void hci_uart_blocking_tx_wrapper(int port, uint8_t data)
{
//This function is nowhere to use.
}
static int hci_uart_init_wrapper(int uart_no, void *cfg)
{
//This function is nowhere to use.
return 0;
}
#endif //CONFIG_BT_LE_HCI_INTERFACE_USE_UART
static int ble_hci_unregistered_hook(void*, void*)
{
ESP_LOGD(NIMBLE_PORT_LOG_TAG,"%s ble hci rx_evt is not registered.",__func__);
return 0;
}
static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler,
void *arg, void **ret_handle_in)
{
int rc = esp_intr_alloc(source, flags | ESP_INTR_FLAG_IRAM, handler,
arg, (intr_handle_t *)ret_handle_in);
return rc;
}
static int esp_intr_free_wrapper(void **ret_handle)
{
int rc = 0;
rc = esp_intr_free((intr_handle_t) * ret_handle);
*ret_handle = NULL;
return rc;
}
void esp_bt_rtc_slow_clk_select(uint8_t slow_clk_src)
{
/* Select slow clock source for BT momdule */
switch (slow_clk_src) {
case MODEM_CLOCK_LPCLK_SRC_MAIN_XTAL:
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Using main XTAL as clock source");
modem_clock_select_lp_clock_source(PERIPH_BT_MODULE, slow_clk_src, (320 - 1));
break;
case MODEM_CLOCK_LPCLK_SRC_RC_SLOW:
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Using 136 kHz RC as clock source, can only run legacy ADV or SCAN due to low clock accuracy!");
modem_clock_select_lp_clock_source(PERIPH_BT_MODULE, slow_clk_src, (5 - 1));
break;
case MODEM_CLOCK_LPCLK_SRC_XTAL32K:
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Using external 32.768 kHz XTAL as clock source");
modem_clock_select_lp_clock_source(PERIPH_BT_MODULE, slow_clk_src, (1 - 1));
break;
case MODEM_CLOCK_LPCLK_SRC_RC32K:
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Using 32 kHz RC as clock source, can only run legacy ADV or SCAN due to low clock accuracy!");
modem_clock_select_lp_clock_source(PERIPH_BT_MODULE, slow_clk_src, (1 - 1));
break;
case MODEM_CLOCK_LPCLK_SRC_EXT32K:
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Using 32 kHz oscillator as clock source, can only run legacy ADV or SCAN due to low clock accuracy!");
modem_clock_select_lp_clock_source(PERIPH_BT_MODULE, slow_clk_src, (1 - 1));
break;
default:
}
}
IRAM_ATTR void controller_sleep_cb(uint32_t enable_tick, void *arg)
{
if (!s_ble_active) {
return;
}
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
r_ble_rtc_wake_up_state_clr();
#endif /* CONFIG_FREERTOS_USE_TICKLESS_IDLE */
esp_phy_disable(PHY_MODEM_BT);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif // CONFIG_PM_ENABLE
s_ble_active = false;
}
IRAM_ATTR void controller_wakeup_cb(void *arg)
{
if (s_ble_active) {
return;
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(s_pm_lock);
r_ble_rtc_wake_up_state_clr();
#endif //CONFIG_PM_ENABLE
esp_phy_enable(PHY_MODEM_BT);
s_ble_active = true;
}
#ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
static esp_err_t sleep_modem_ble_mac_retention_init(void *arg)
{
uint8_t size;
int extra = *(int *)arg;
const sleep_retention_entries_config_t *ble_mac_modem_config = esp_ble_mac_retention_link_get(&size, extra);
esp_err_t err = sleep_retention_entries_create(ble_mac_modem_config, size, REGDMA_LINK_PRI_BT_MAC_BB, SLEEP_RETENTION_MODULE_BLE_MAC);
if (err == ESP_OK) {
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "Modem BLE MAC retention initialization");
}
return err;
}
static esp_err_t sleep_modem_ble_mac_modem_state_init(uint8_t extra)
{
int retention_args = extra;
sleep_retention_module_init_param_t init_param = {
.cbs = { .create = { .handle = sleep_modem_ble_mac_retention_init, .arg = &retention_args } },
.depends = BIT(SLEEP_RETENTION_MODULE_BT_BB)
};
esp_err_t err = sleep_retention_module_init(SLEEP_RETENTION_MODULE_BLE_MAC, &init_param);
if (err == ESP_OK) {
err = sleep_retention_module_allocate(SLEEP_RETENTION_MODULE_BLE_MAC);
}
return err;
}
static void sleep_modem_ble_mac_modem_state_deinit(void)
{
esp_err_t err = sleep_retention_module_free(SLEEP_RETENTION_MODULE_BLE_MAC);
if (err == ESP_OK) {
err = sleep_retention_module_deinit(SLEEP_RETENTION_MODULE_BLE_MAC);
assert(err == ESP_OK);
}
}
void sleep_modem_light_sleep_overhead_set(uint32_t overhead)
{
esp_ble_set_wakeup_overhead(overhead);
}
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
esp_err_t controller_sleep_init(void)
{
esp_err_t rc = 0;
#ifdef CONFIG_BT_LE_SLEEP_ENABLE
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "BLE modem sleep is enabled");
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
r_ble_lll_rfmgmt_set_sleep_cb(controller_sleep_cb, controller_wakeup_cb, 0, 0,
BLE_RTC_DELAY_US_LIGHT_SLEEP);
#else
r_ble_lll_rfmgmt_set_sleep_cb(controller_sleep_cb, controller_wakeup_cb, 0, 0,
BLE_RTC_DELAY_US_MODEM_SLEEP);
#endif /* FREERTOS_USE_TICKLESS_IDLE */
#endif // CONFIG_BT_LE_SLEEP_ENABLE
#ifdef CONFIG_PM_ENABLE
rc = esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "bt", &s_pm_lock);
if (rc != ESP_OK) {
goto error;
}
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
/* Create a new regdma link for BLE related register restoration */
rc = sleep_modem_ble_mac_modem_state_init(0);
assert(rc == 0);
esp_sleep_enable_bt_wakeup();
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "Enable light sleep, the wake up source is BLE timer");
rc = esp_pm_register_inform_out_light_sleep_overhead_callback(sleep_modem_light_sleep_overhead_set);
if (rc != ESP_OK) {
goto error;
}
#endif /* CONFIG_FREERTOS_USE_TICKLESS_IDLE */
return rc;
error:
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
esp_sleep_disable_bt_wakeup();
esp_pm_unregister_inform_out_light_sleep_overhead_callback(sleep_modem_light_sleep_overhead_set);
#endif /* CONFIG_FREERTOS_USE_TICKLESS_IDLE */
/*lock should release first and then delete*/
if (s_pm_lock != NULL) {
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
}
#endif // CONFIG_PM_ENABLE
return rc;
}
void controller_sleep_deinit(void)
{
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
r_ble_rtc_wake_up_state_clr();
esp_sleep_disable_bt_wakeup();
sleep_modem_ble_mac_modem_state_deinit();
esp_pm_unregister_inform_out_light_sleep_overhead_callback(sleep_modem_light_sleep_overhead_set);
#endif /* CONFIG_FREERTOS_USE_TICKLESS_IDLE */
#ifdef CONFIG_PM_ENABLE
/* lock should be released first */
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif //CONFIG_PM_ENABLE
}
typedef enum {
FILTER_DUPLICATE_PDUTYPE = BIT(0),
FILTER_DUPLICATE_LENGTH = BIT(1),
FILTER_DUPLICATE_ADDRESS = BIT(2),
FILTER_DUPLICATE_ADVDATA = BIT(3),
FILTER_DUPLICATE_DEFAULT = FILTER_DUPLICATE_PDUTYPE | FILTER_DUPLICATE_ADDRESS,
FILTER_DUPLICATE_PDU_ALL = 0xF,
FILTER_DUPLICATE_EXCEPTION_FOR_MESH = BIT(4),
FILTER_DUPLICATE_AD_TYPE = BIT(5),
}disc_duplicate_mode_t;
extern void r_filter_duplicate_mode_enable(disc_duplicate_mode_t mode);
extern void r_filter_duplicate_mode_disable(disc_duplicate_mode_t mode);
extern void r_filter_duplicate_set_ring_list_max_num(uint32_t max_num);
extern void r_scan_duplicate_cache_refresh_set_time(uint32_t period_time);
int
ble_vhci_disc_duplicate_mode_enable(int mode)
{
// TODO: use vendor hci to update
r_filter_duplicate_mode_enable(mode);
return true;
}
int
ble_vhci_disc_duplicate_mode_disable(int mode)
{
// TODO: use vendor hci to update
r_filter_duplicate_mode_disable(mode);
return true;
}
int ble_vhci_disc_duplicate_set_max_cache_size(int max_cache_size){
// TODO: use vendor hci to update
r_filter_duplicate_set_ring_list_max_num(max_cache_size);
return true;
}
int ble_vhci_disc_duplicate_set_period_refresh_time(int refresh_period_time){
// TODO: use vendor hci to update
r_scan_duplicate_cache_refresh_set_time(refresh_period_time);
return true;
}
/**
* @brief Config scan duplicate option mode from menuconfig (Adapt to the old configuration method.)
*/
void ble_controller_scan_duplicate_config(void)
{
uint32_t duplicate_mode = FILTER_DUPLICATE_DEFAULT;
uint32_t cache_size = 100;
#if CONFIG_BT_LE_SCAN_DUPL == true
cache_size = CONFIG_BT_LE_LL_DUP_SCAN_LIST_COUNT;
if (CONFIG_BT_LE_SCAN_DUPL_TYPE == 0) {
duplicate_mode = FILTER_DUPLICATE_ADDRESS | FILTER_DUPLICATE_PDUTYPE;
} else if (CONFIG_BT_LE_SCAN_DUPL_TYPE == 1) {
duplicate_mode = FILTER_DUPLICATE_ADVDATA;
} else if (CONFIG_BT_LE_SCAN_DUPL_TYPE == 2) {
duplicate_mode = FILTER_DUPLICATE_ADDRESS | FILTER_DUPLICATE_ADVDATA;
}
duplicate_mode |= FILTER_DUPLICATE_EXCEPTION_FOR_MESH;
ble_vhci_disc_duplicate_set_period_refresh_time(CONFIG_BT_LE_SCAN_DUPL_CACHE_REFRESH_PERIOD);
#endif
ble_vhci_disc_duplicate_mode_disable(0xFFFFFFFF);
ble_vhci_disc_duplicate_mode_enable(duplicate_mode);
ble_vhci_disc_duplicate_set_max_cache_size(cache_size);
}
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
{
uint8_t mac[6];
esp_err_t ret = ESP_OK;
ble_npl_count_info_t npl_info;
uint32_t slow_clk_freq = 0;
memset(&npl_info, 0, sizeof(ble_npl_count_info_t));
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_ERR_INVALID_STATE;
}
if (!cfg) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "cfg is NULL");
return ESP_ERR_INVALID_ARG;
}
ret = esp_register_ext_funcs(&ext_funcs_ro);
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "register extend functions failed");
return ret;
}
/* Initialize the function pointers for OS porting */
npl_freertos_funcs_init();
struct npl_funcs_t *p_npl_funcs = npl_freertos_funcs_get();
if (!p_npl_funcs) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions get failed");
return ESP_ERR_INVALID_ARG;
}
ret = esp_register_npl_funcs(p_npl_funcs);
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions register failed");
goto free_mem;
}
ble_get_npl_element_info(cfg, &npl_info);
npl_freertos_set_controller_npl_info(&npl_info);
if (npl_freertos_mempool_init() != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl mempool init failed");
ret = ESP_ERR_INVALID_ARG;
goto free_mem;
}
#if CONFIG_BT_NIMBLE_ENABLED
/* ble_npl_eventq_init() needs to use npl functions in rom and
* must be called after esp_bt_controller_init().
*/
ble_npl_eventq_init(nimble_port_get_dflt_eventq());
#endif // CONFIG_BT_NIMBLE_ENABLED
/* Enable BT-related clocks */
modem_clock_module_enable(PERIPH_BT_MODULE);
modem_clock_module_mac_reset(PERIPH_BT_MODULE);
#if CONFIG_BT_LE_LP_CLK_SRC_MAIN_XTAL
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_MAIN_XTAL);
slow_clk_freq = 100000;
#else
#if CONFIG_RTC_CLK_SRC_INT_RC
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_RC_SLOW);
slow_clk_freq = 30000;
#elif CONFIG_RTC_CLK_SRC_EXT_CRYS
if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_XTAL32K);
slow_clk_freq = 32768;
} else {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock");
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_MAIN_XTAL);
slow_clk_freq = 100000;
}
#elif CONFIG_RTC_CLK_SRC_INT_RC32K
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_RC32K);
slow_clk_freq = 32000;
#elif CONFIG_RTC_CLK_SRC_EXT_OSC
esp_bt_rtc_slow_clk_select(MODEM_CLOCK_LPCLK_SRC_EXT32K);
slow_clk_freq = 32000;
#else
ESP_LOGE(NIMBLE_PORT_LOG_TAG, "Unsupported clock source");
assert(0);
#endif
#endif /* CONFIG_BT_LE_LP_CLK_SRC_MAIN_XTAL */
if (ble_osi_coex_funcs_register((struct osi_coex_funcs_t *)&s_osi_coex_funcs_ro) != 0) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "osi coex funcs reg failed");
ret = ESP_ERR_INVALID_ARG;
goto modem_deint;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_init();
#endif // CONFIG_SW_COEXIST_ENABLE
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
interface_func_t bt_controller_log_interface;
bt_controller_log_interface = esp_bt_controller_log_interface;
uint8_t buffers = 0;
#if CONFIG_BT_LE_CONTROLLER_LOG_CTRL_ENABLED
buffers |= ESP_BLE_LOG_BUF_CONTROLLER;
#endif // CONFIG_BT_LE_CONTROLLER_LOG_CTRL_ENABLED
#if CONFIG_BT_LE_CONTROLLER_LOG_HCI_ENABLED
buffers |= ESP_BLE_LOG_BUF_HCI;
#endif // CONFIG_BT_LE_CONTROLLER_LOG_HCI_ENABLED
#if CONFIG_BT_LE_CONTROLLER_LOG_DUMP_ONLY
ret = r_ble_log_init_async(bt_controller_log_interface, false, buffers, (uint32_t *)log_bufs_size);
#else
ret = r_ble_log_init_async(bt_controller_log_interface, true, buffers, (uint32_t *)log_bufs_size);
#endif // CONFIG_BT_CONTROLLER_LOG_DUMP
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "ble_controller_log_init failed %d", ret);
goto modem_deint;
}
#endif // CONFIG_BT_CONTROLLER_LOG_ENABLED
ret = ble_controller_init(cfg);
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "ble_controller_init failed %d", ret);
goto modem_deint;
}
ESP_LOGI(NIMBLE_PORT_LOG_TAG, "ble controller commit:[%s]", ble_controller_get_compile_version());
esp_ble_change_rtc_freq(slow_clk_freq);
ble_controller_scan_duplicate_config();
ret = os_msys_init();
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "msys_init failed %d", ret);
goto free_controller;
}
ret = controller_sleep_init();
if (ret != ESP_OK) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "controller_sleep_init failed %d", ret);
goto free_controller;
}
ESP_ERROR_CHECK(esp_read_mac((uint8_t *)mac, ESP_MAC_BT));
swap_in_place(mac, 6);
esp_ble_ll_set_public_addr(mac);
ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
ble_hci_trans_cfg_hs((ble_hci_trans_rx_cmd_fn *)ble_hci_unregistered_hook,NULL,
(ble_hci_trans_rx_acl_fn *)ble_hci_unregistered_hook,NULL);
return ESP_OK;
free_controller:
controller_sleep_deinit();
os_msys_deinit();
ble_controller_deinit();
modem_deint:
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
r_ble_log_deinit_async();
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
modem_clock_deselect_lp_clock_source(PERIPH_BT_MODULE);
modem_clock_module_disable(PERIPH_BT_MODULE);
#if CONFIG_BT_NIMBLE_ENABLED
ble_npl_eventq_deinit(nimble_port_get_dflt_eventq());
#endif // CONFIG_BT_NIMBLE_ENABLED
free_mem:
npl_freertos_mempool_deinit();
esp_unregister_npl_funcs();
npl_freertos_funcs_deinit();
esp_unregister_ext_funcs();
return ret;
}
esp_err_t esp_bt_controller_deinit(void)
{
if ((ble_controller_status < ESP_BT_CONTROLLER_STATUS_INITED) ||
(ble_controller_status >= ESP_BT_CONTROLLER_STATUS_ENABLED)) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
controller_sleep_deinit();
os_msys_deinit();
modem_clock_deselect_lp_clock_source(PERIPH_BT_MODULE);
modem_clock_module_disable(PERIPH_BT_MODULE);
ble_controller_deinit();
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
r_ble_log_deinit_async();
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
#if CONFIG_BT_NIMBLE_ENABLED
/* De-initialize default event queue */
ble_npl_eventq_deinit(nimble_port_get_dflt_eventq());
#endif // CONFIG_BT_NIMBLE_ENABLED
esp_unregister_npl_funcs();
esp_unregister_ext_funcs();
/* De-initialize npl functions */
npl_freertos_funcs_deinit();
npl_freertos_mempool_deinit();
ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
return ESP_OK;
}
esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
esp_err_t ret = ESP_OK;
if (mode != ESP_BT_MODE_BLE) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller mode");
return ESP_FAIL;
}
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
if (!s_ble_active) {
#if CONFIG_PM_ENABLE
esp_pm_lock_acquire(s_pm_lock);
#endif // CONFIG_PM_ENABLE
esp_phy_enable(PHY_MODEM_BT);
s_ble_active = true;
}
esp_btbb_enable();
#if CONFIG_SW_COEXIST_ENABLE
coex_enable();
#endif // CONFIG_SW_COEXIST_ENABLE
if (ble_controller_enable(mode) != 0) {
ret = ESP_FAIL;
goto error;
}
ble_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
return ESP_OK;
error:
#if CONFIG_SW_COEXIST_ENABLE
coex_disable();
#endif
esp_btbb_disable();
if (s_ble_active) {
esp_phy_disable(PHY_MODEM_BT);
#if CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif // CONFIG_PM_ENABLE
s_ble_active = false;
}
return ret;
}
esp_err_t esp_bt_controller_disable(void)
{
if (ble_controller_status < ESP_BT_CONTROLLER_STATUS_ENABLED) {
ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state");
return ESP_FAIL;
}
if (ble_controller_disable() != 0) {
return ESP_FAIL;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_disable();
#endif
esp_btbb_disable();
if (s_ble_active) {
esp_phy_disable(PHY_MODEM_BT);
#if CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif // CONFIG_PM_ENABLE
s_ble_active = false;
}
ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
return ESP_OK;
}
esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
ESP_LOGD(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
{
int ret = heap_caps_add_region(start, end);
/* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
* is too small to fit a heap. This cannot be termed as a fatal error and hence
* we replace it by ESP_OK
*/
if (ret == ESP_ERR_INVALID_SIZE) {
return ESP_OK;
}
return ret;
}
typedef struct {
intptr_t start;
intptr_t end;
const char* name;
} bt_area_t;
static esp_err_t esp_bt_mem_release_area(const bt_area_t *area)
{
esp_err_t ret = ESP_OK;
intptr_t mem_start = area->start;
intptr_t mem_end = area->end;
if (mem_start != mem_end) {
ESP_LOGD(NIMBLE_PORT_LOG_TAG, "Release %s [0x%08x] - [0x%08x], len %d", area->name, mem_start, mem_end, mem_end - mem_start);
ret = try_heap_caps_add_region(mem_start, mem_end);
}
return ret;
}
static esp_err_t esp_bt_mem_release_areas(const bt_area_t *area1, const bt_area_t *area2)
{
esp_err_t ret = ESP_OK;
if (area1->end == area2->start) {
bt_area_t merged_area = {
.start = area1->start,
.end = area2->end,
.name = area1->name
};
ret = esp_bt_mem_release_area(&merged_area);
} else {
esp_bt_mem_release_area(area1);
ret = esp_bt_mem_release_area(area2);
}
return ret;
}
esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
esp_err_t ret = ESP_OK;
if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
bt_area_t bss = {
.start = (intptr_t)&_bt_bss_start,
.end = (intptr_t)&_bt_bss_end,
.name = "BT BSS",
};
bt_area_t cont_bss = {
.start = (intptr_t)&_bt_controller_bss_start,
.end = (intptr_t)&_bt_controller_bss_end,
.name = "BT Controller BSS",
};
bt_area_t data = {
.start = (intptr_t)&_bt_data_start,
.end = (intptr_t)&_bt_data_end,
.name = "BT Data",
};
bt_area_t cont_data = {
.start = (intptr_t)&_bt_controller_data_start,
.end = (intptr_t)&_bt_controller_data_end,
.name = "BT Controller Data"
};
if (mode & ESP_BT_MODE_BLE) {
/* Start by freeing Bluetooth BSS section */
if (ret == ESP_OK) {
ret = esp_bt_mem_release_areas(&bss, &cont_bss);
}
/* Do the same thing with the Bluetooth data section */
if (ret == ESP_OK) {
ret = esp_bt_mem_release_areas(&data, &cont_data);
}
}
return ret;
}
esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
return ble_controller_status;
}
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
esp_err_t stat = ESP_FAIL;
switch (power_type) {
case ESP_BLE_PWR_TYPE_DEFAULT:
case ESP_BLE_PWR_TYPE_ADV:
case ESP_BLE_PWR_TYPE_SCAN:
if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0, power_level) == 0) {
stat = ESP_OK;
}
break;
case ESP_BLE_PWR_TYPE_CONN_HDL0:
case ESP_BLE_PWR_TYPE_CONN_HDL1:
case ESP_BLE_PWR_TYPE_CONN_HDL2:
case ESP_BLE_PWR_TYPE_CONN_HDL3:
case ESP_BLE_PWR_TYPE_CONN_HDL4:
case ESP_BLE_PWR_TYPE_CONN_HDL5:
case ESP_BLE_PWR_TYPE_CONN_HDL6:
case ESP_BLE_PWR_TYPE_CONN_HDL7:
case ESP_BLE_PWR_TYPE_CONN_HDL8:
if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_CONN, power_type, power_level) == 0) {
stat = ESP_OK;
}
break;
default:
stat = ESP_ERR_NOT_SUPPORTED;
break;
}
return stat;
}
esp_err_t esp_ble_tx_power_set_enhanced(esp_ble_enhanced_power_type_t power_type, uint16_t handle,
esp_power_level_t power_level)
{
esp_err_t stat = ESP_FAIL;
switch (power_type) {
case ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT:
case ESP_BLE_ENHANCED_PWR_TYPE_SCAN:
case ESP_BLE_ENHANCED_PWR_TYPE_INIT:
if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0, power_level) == 0) {
stat = ESP_OK;
}
break;
case ESP_BLE_ENHANCED_PWR_TYPE_ADV:
case ESP_BLE_ENHANCED_PWR_TYPE_CONN:
if (ble_txpwr_set(power_type, handle, power_level) == 0) {
stat = ESP_OK;
}
break;
default:
stat = ESP_ERR_NOT_SUPPORTED;
break;
}
return stat;
}
esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
int tx_level = 0;
switch (power_type) {
case ESP_BLE_PWR_TYPE_ADV:
case ESP_BLE_PWR_TYPE_SCAN:
case ESP_BLE_PWR_TYPE_DEFAULT:
tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0);
break;
case ESP_BLE_PWR_TYPE_CONN_HDL0:
case ESP_BLE_PWR_TYPE_CONN_HDL1:
case ESP_BLE_PWR_TYPE_CONN_HDL2:
case ESP_BLE_PWR_TYPE_CONN_HDL3:
case ESP_BLE_PWR_TYPE_CONN_HDL4:
case ESP_BLE_PWR_TYPE_CONN_HDL5:
case ESP_BLE_PWR_TYPE_CONN_HDL6:
case ESP_BLE_PWR_TYPE_CONN_HDL7:
case ESP_BLE_PWR_TYPE_CONN_HDL8:
tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_CONN, power_type);
break;
default:
return ESP_PWR_LVL_INVALID;
}
if (tx_level < 0) {
return ESP_PWR_LVL_INVALID;
}
return (esp_power_level_t)tx_level;
}
esp_power_level_t esp_ble_tx_power_get_enhanced(esp_ble_enhanced_power_type_t power_type,
uint16_t handle)
{
int tx_level = 0;
switch (power_type) {
case ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT:
case ESP_BLE_ENHANCED_PWR_TYPE_SCAN:
case ESP_BLE_ENHANCED_PWR_TYPE_INIT:
tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0);
break;
case ESP_BLE_ENHANCED_PWR_TYPE_ADV:
case ESP_BLE_ENHANCED_PWR_TYPE_CONN:
tx_level = ble_txpwr_get(power_type, handle);
break;
default:
return ESP_PWR_LVL_INVALID;
}
if (tx_level < 0) {
return ESP_PWR_LVL_INVALID;
}
return (esp_power_level_t)tx_level;
}
#if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
static void esp_bt_controller_log_interface(uint32_t len, const uint8_t *addr, bool end)
{
for (int i = 0; i < len; i++) {
esp_rom_printf("%02x ", addr[i]);
}
if (end) {
esp_rom_printf("\n");
}
}
void esp_ble_controller_log_dump_all(bool output)
{
portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL_SAFE(&spinlock);
esp_panic_handler_reconfigure_wdts(5000);
BT_ASSERT_PRINT("\r\n[DUMP_START:");
r_ble_log_async_output_dump_all(output);
BT_ASSERT_PRINT(":DUMP_END]\r\n");
portEXIT_CRITICAL_SAFE(&spinlock);
}
#endif // CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
#if (!CONFIG_BT_NIMBLE_ENABLED) && (CONFIG_BT_CONTROLLER_ENABLED)
#if CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
#define BLE_SM_KEY_ERR 0x17
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
#include "mbedtls/aes.h"
#if CONFIG_BT_LE_SM_SC
#include "mbedtls/cipher.h"
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/cmac.h"
#include "mbedtls/ecdh.h"
#include "mbedtls/ecp.h"
static mbedtls_ecp_keypair keypair;
#endif // CONFIG_BT_LE_SM_SC
#else
#include "tinycrypt/aes.h"
#include "tinycrypt/constants.h"
#include "tinycrypt/utils.h"
#if CONFIG_BT_LE_SM_SC
#include "tinycrypt/cmac_mode.h"
#include "tinycrypt/ecc_dh.h"
#endif // CONFIG_BT_LE_SM_SC
#endif // CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
/* Based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */
static const uint8_t ble_sm_alg_dbg_priv_key[32] = {
0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3,
0xd2, 0x10, 0x3f, 0x50, 0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99,
0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
};
int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y,
const uint8_t *our_priv_key, uint8_t *out_dhkey)
{
uint8_t dh[32];
uint8_t pk[64];
uint8_t priv[32];
int rc = BLE_SM_KEY_ERR;
swap_buf(pk, peer_pub_key_x, 32);
swap_buf(&pk[32], peer_pub_key_y, 32);
swap_buf(priv, our_priv_key, 32);
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
struct mbedtls_ecp_point pt = {0}, Q = {0};
mbedtls_mpi z = {0}, d = {0};
mbedtls_ctr_drbg_context ctr_drbg = {0};
mbedtls_entropy_context entropy = {0};
uint8_t pub[65] = {0};
/* Hardcoded first byte of pub key for MBEDTLS_ECP_PF_UNCOMPRESSED */
pub[0] = 0x04;
memcpy(&pub[1], pk, 64);
/* Initialize the required structures here */
mbedtls_ecp_point_init(&pt);
mbedtls_ecp_point_init(&Q);
mbedtls_ctr_drbg_init(&ctr_drbg);
mbedtls_entropy_init(&entropy);
mbedtls_mpi_init(&d);
mbedtls_mpi_init(&z);
/* Below 3 steps are to validate public key on curve secp256r1 */
if (mbedtls_ecp_group_load(&keypair.MBEDTLS_PRIVATE(grp), MBEDTLS_ECP_DP_SECP256R1) != 0) {
goto exit;
}
if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &pt, pub, 65) != 0) {
goto exit;
}
if (mbedtls_ecp_check_pubkey(&keypair.MBEDTLS_PRIVATE(grp), &pt) != 0) {
goto exit;
}
/* Set PRNG */
if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, NULL, 0)) != 0) {
goto exit;
}
/* Prepare point Q from pub key */
if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &Q, pub, 65) != 0) {
goto exit;
}
if (mbedtls_mpi_read_binary(&d, priv, 32) != 0) {
goto exit;
}
rc = mbedtls_ecdh_compute_shared(&keypair.MBEDTLS_PRIVATE(grp), &z, &Q, &d,
mbedtls_ctr_drbg_random, &ctr_drbg);
if (rc != 0) {
goto exit;
}
rc = mbedtls_mpi_write_binary(&z, dh, 32);
if (rc != 0) {
goto exit;
}
exit:
mbedtls_ecp_point_free(&pt);
mbedtls_mpi_free(&z);
mbedtls_mpi_free(&d);
mbedtls_ecp_point_free(&Q);
mbedtls_entropy_free(&entropy);
mbedtls_ctr_drbg_free(&ctr_drbg);
if (rc != 0) {
return BLE_SM_KEY_ERR;
}
#else
if (uECC_valid_public_key(pk, &curve_secp256r1) < 0) {
return BLE_SM_KEY_ERR;
}
rc = uECC_shared_secret(pk, priv, dh, &curve_secp256r1);
if (rc == TC_CRYPTO_FAIL) {
return BLE_SM_KEY_ERR;
}
#endif // CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
swap_buf(out_dhkey, dh, 32);
return 0;
}
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
static int mbedtls_gen_keypair(uint8_t *public_key, uint8_t *private_key)
{
int rc = BLE_SM_KEY_ERR;
mbedtls_entropy_context entropy = {0};
mbedtls_ctr_drbg_context ctr_drbg = {0};
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctr_drbg);
mbedtls_ecp_keypair_init(&keypair);
if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,
NULL, 0)) != 0) {
goto exit;
}
if ((rc = mbedtls_ecp_gen_key(MBEDTLS_ECP_DP_SECP256R1, &keypair,
mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) {
goto exit;
}
if ((rc = mbedtls_mpi_write_binary(&keypair.MBEDTLS_PRIVATE(d), private_key, 32)) != 0) {
goto exit;
}
size_t olen = 0;
uint8_t pub[65] = {0};
if ((rc = mbedtls_ecp_point_write_binary(&keypair.MBEDTLS_PRIVATE(grp), &keypair.MBEDTLS_PRIVATE(Q), MBEDTLS_ECP_PF_UNCOMPRESSED,
&olen, pub, 65)) != 0) {
goto exit;
}
memcpy(public_key, &pub[1], 64);
exit:
mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_entropy_free(&entropy);
if (rc != 0) {
mbedtls_ecp_keypair_free(&keypair);
return BLE_SM_KEY_ERR;
}
return 0;
}
#endif // CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
/**
* pub: 64 bytes
* priv: 32 bytes
*/
int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv)
{
#if CONFIG_BT_LE_SM_SC_DEBUG_KEYS
swap_buf(pub, ble_sm_alg_dbg_pub_key, 32);
swap_buf(&pub[32], &ble_sm_alg_dbg_pub_key[32], 32);
swap_buf(priv, ble_sm_alg_dbg_priv_key, 32);
#else
uint8_t pk[64];
do {
#if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
if (mbedtls_gen_keypair(pk, priv) != 0) {
return BLE_SM_KEY_ERR;
}
#else
if (uECC_make_key(pk, priv, &curve_secp256r1) != TC_CRYPTO_SUCCESS) {
return BLE_SM_KEY_ERR;
}
#endif // CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
/* Make sure generated key isn't debug key. */
} while (memcmp(priv, ble_sm_alg_dbg_priv_key, 32) == 0);
swap_buf(pub, pk, 32);
swap_buf(&pub[32], &pk[32], 32);
swap_in_place(priv, 32);
#endif // CONFIG_BT_LE_SM_SC_DEBUG_KEYS
return 0;
}
#endif // CONFIG_BT_LE_SM_LEGACY || CONFIG_BT_LE_SM_SC
#endif // (!CONFIG_BT_NIMBLE_ENABLED) && (CONFIG_BT_CONTROLLER_ENABLED)