886 lines
29 KiB
C

/* mbedTLS GCM test
*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#include <esp_system.h>
#include "mbedtls/aes.h"
#include "mbedtls/gcm.h"
#include "unity.h"
#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "test_utils.h"
#include "ccomp_timer.h"
#include "sys/param.h"
#if CONFIG_MBEDTLS_HARDWARE_AES
/*
Python example code for generating test vectors
import os, binascii
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
def as_c_array(byte_arr):
hex_str = ''
for idx, byte in enumerate(byte_arr):
hex_str += "0x{:02x}, ".format(byte)
bytes_per_line = 8
if idx % bytes_per_line == bytes_per_line - 1:
hex_str += '\n'
return hex_str
key = b'\x44' * 16
iv = b'\xEE' * 16
data = b'\xAA' * 3200
aad = b'\x76' * 16
aesgcm = AESGCM(key)
ct = aesgcm.encrypt(iv, data, aad)
print(as_c_array(ct))
*/
TEST_CASE("mbedtls GCM stream test", "[aes-gcm]")
{
const unsigned SZ = 100;
mbedtls_gcm_context ctx;
uint8_t nonce[16];
uint8_t key[16];
uint8_t tag[16];
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
const uint8_t expected_cipher[] = {
0x03, 0x92, 0x13, 0x49, 0x1f, 0x1f, 0x24, 0x41,
0xe8, 0xeb, 0x89, 0x47, 0x50, 0x0a, 0xce, 0xa3,
0xc7, 0x1c, 0x10, 0x70, 0xb0, 0x89, 0x82, 0x5e,
0x0f, 0x4a, 0x23, 0xee, 0xd2, 0xfc, 0xff, 0x45,
0x61, 0x4c, 0xd1, 0xfb, 0x6d, 0xe2, 0xbe, 0x67,
0x6f, 0x94, 0x72, 0xa3, 0xe7, 0x04, 0x99, 0xb3,
0x4a, 0x46, 0xf9, 0x2b, 0xaf, 0xac, 0xa9, 0x0e,
0x43, 0x7e, 0x8b, 0xc4, 0xbf, 0x49, 0xa4, 0x83,
0x9c, 0x31, 0x11, 0x1c, 0x09, 0xac, 0x90, 0xdf,
0x00, 0x34, 0x08, 0xe5, 0x70, 0xa3, 0x7e, 0x4b,
0x36, 0x48, 0x5a, 0x3f, 0x28, 0xc7, 0x1c, 0xd9,
0x1b, 0x1b, 0x49, 0x96, 0xe9, 0x7c, 0xea, 0x54,
0x7c, 0x71, 0x29, 0x0d
};
const uint8_t expected_tag[] = {
0x35, 0x1c, 0x21, 0xc6, 0xbc, 0x6b, 0x18, 0x52,
0x90, 0xe1, 0xf2, 0x5b, 0xe1, 0xf6, 0x15, 0xee,
};
memset(nonce, 0x89, 16);
memset(key, 0x56, 16);
// allocate internal memory
uint8_t *ciphertext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
uint8_t *plaintext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
uint8_t *decryptedtext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(ciphertext);
TEST_ASSERT_NOT_NULL(plaintext);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0xAB, SZ);
/* Test that all the end results are the same
no matter how many bytes we encrypt each call
*/
for (int bytes_to_process = 16; bytes_to_process < SZ; bytes_to_process = bytes_to_process + 16) {
memset(nonce, 0x89, 16);
memset(ciphertext, 0x0, SZ);
memset(decryptedtext, 0x0, SZ);
memset(tag, 0x0, 16);
mbedtls_gcm_init(&ctx);
mbedtls_gcm_setkey(&ctx, cipher, key, 128);
mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, nonce, sizeof(nonce) );
mbedtls_gcm_update_ad( &ctx, NULL, 0 );
size_t olen;
// Encrypt
for (int idx = 0; idx < SZ; idx = idx + bytes_to_process) {
// Limit length of last call to avoid exceeding buffer size
size_t length = (idx + bytes_to_process > SZ) ? (SZ - idx) : bytes_to_process;
mbedtls_gcm_update(&ctx, plaintext + idx, length, ciphertext + idx, length, &olen);
}
mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag, sizeof(tag) );
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher, ciphertext, SZ);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag, sizeof(tag));
// Decrypt
memset(nonce, 0x89, 16);
mbedtls_gcm_free( &ctx );
mbedtls_gcm_init(&ctx);
mbedtls_gcm_setkey(&ctx, cipher, key, 128);
mbedtls_gcm_starts( &ctx, MBEDTLS_AES_DECRYPT, nonce, sizeof(nonce));
mbedtls_gcm_update_ad( &ctx, NULL, 0 );
for (int idx = 0; idx < SZ; idx = idx + bytes_to_process) {
// Limit length of last call to avoid exceeding buffer size
size_t length = (idx + bytes_to_process > SZ) ? (SZ - idx) : bytes_to_process;
mbedtls_gcm_update(&ctx, ciphertext + idx, length, decryptedtext + idx, length, &olen);
}
mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag, sizeof(tag) );
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, SZ);
mbedtls_gcm_free( &ctx );
}
free(plaintext);
free(ciphertext);
free(decryptedtext);
}
TEST_CASE("mbedtls AES GCM self-tests", "[aes-gcm]")
{
TEST_ASSERT_FALSE_MESSAGE(mbedtls_gcm_self_test(1), "AES GCM self-test should pass.");
}
typedef struct {
uint8_t *plaintext;
size_t plaintext_length;
uint32_t output_caps;
uint8_t *add_buf;
size_t add_length;
uint8_t *iv;
size_t iv_length;
uint8_t *key;
size_t key_bits;
size_t tag_len;
} aes_gcm_test_cfg_t;
typedef struct {
const uint8_t *expected_tag;
const uint8_t *ciphertext_last_block; // Last block of the ciphertext
} aes_gcm_test_expected_res_t;
typedef enum {
AES_GCM_TEST_CRYPT_N_TAG,
AES_GCM_TEST_START_UPDATE_FINISH,
} aes_gcm_test_type_t;
static void aes_gcm_test(aes_gcm_test_cfg_t *cfg, aes_gcm_test_expected_res_t *res, aes_gcm_test_type_t aes_gcm_type)
{
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
mbedtls_gcm_context ctx;
uint8_t tag_buf_encrypt[16] = {};
uint8_t tag_buf_decrypt[16] = {};
uint8_t iv_buf[16] = {};
uint8_t *ciphertext = heap_caps_malloc(cfg->plaintext_length, cfg->output_caps);
uint8_t *output = heap_caps_malloc(cfg->plaintext_length, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
if (cfg->plaintext_length != 0) {
TEST_ASSERT_NOT_NULL(ciphertext);
TEST_ASSERT_NOT_NULL(output);
}
memset(ciphertext, 0, cfg->plaintext_length);
memset(output, 0, cfg->plaintext_length);
memcpy(iv_buf, cfg->iv, cfg->iv_length);
mbedtls_gcm_init(&ctx);
mbedtls_gcm_setkey(&ctx, cipher, cfg->key, cfg->key_bits);
size_t olen;
/* Encrypt and tag */
if (aes_gcm_type == AES_GCM_TEST_CRYPT_N_TAG) {
mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_AES_ENCRYPT, cfg->plaintext_length, iv_buf, cfg->iv_length, cfg->add_buf, cfg->add_length, cfg->plaintext, ciphertext, cfg->tag_len, tag_buf_encrypt);
} else if (aes_gcm_type == AES_GCM_TEST_START_UPDATE_FINISH) {
TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, iv_buf, cfg->iv_length) == 0 );
TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, cfg->add_buf, cfg->add_length) == 0 );
TEST_ASSERT(mbedtls_gcm_update( &ctx, cfg->plaintext, cfg->plaintext_length, ciphertext, cfg->plaintext_length, &olen) == 0 );
TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf_encrypt, cfg->tag_len) == 0 );
}
size_t offset = cfg->plaintext_length > 16 ? cfg->plaintext_length - 16 : 0;
/* Sanity check: make sure the last ciphertext block matches what we expect to see. */
TEST_ASSERT_EQUAL_HEX8_ARRAY(res->ciphertext_last_block, ciphertext + offset, MIN(16, cfg->plaintext_length));
TEST_ASSERT_EQUAL_HEX8_ARRAY(res->expected_tag, tag_buf_encrypt, cfg->tag_len);
/* Decrypt and authenticate */
if (aes_gcm_type == AES_GCM_TEST_CRYPT_N_TAG) {
TEST_ASSERT(mbedtls_gcm_auth_decrypt(&ctx, cfg->plaintext_length, iv_buf, cfg->iv_length, cfg->add_buf, cfg->add_length, res->expected_tag, cfg->tag_len, ciphertext, output) == 0);
} else if (aes_gcm_type == AES_GCM_TEST_START_UPDATE_FINISH) {
TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_DECRYPT, iv_buf, cfg->iv_length) == 0 );
TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, cfg->add_buf, cfg->add_length) == 0 );
TEST_ASSERT(mbedtls_gcm_update( &ctx, ciphertext, cfg->plaintext_length, output, cfg->plaintext_length, &olen) == 0 );
TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf_decrypt, cfg->tag_len) == 0 );
/* mbedtls_gcm_auth_decrypt already checks tag so only needed for AES_GCM_TEST_START_UPDATE_FINISH */
TEST_ASSERT_EQUAL_HEX8_ARRAY(res->expected_tag, tag_buf_decrypt, cfg->tag_len);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(cfg->plaintext, output, cfg->plaintext_length);
mbedtls_gcm_free( &ctx );
free(ciphertext);
free(output);
}
TEST_CASE("mbedtls AES GCM", "[aes-gcm]")
{
uint8_t iv[16];
uint8_t key[16];
uint8_t add[30];
memset(iv, 0xB1, sizeof(iv));
memset(key, 0x27, sizeof(key));
memset(add, 0x90, sizeof(add));
size_t length[] = {10, 16, 500, 5000, 12345};
const uint8_t expected_last_block[][16] = {
{
0x37, 0x99, 0x4b, 0x16, 0x5f, 0x8d, 0x27, 0xb1,
0x60, 0x72
},
{
0x37, 0x99, 0x4b, 0x16, 0x5f, 0x8d, 0x27, 0xb1,
0x60, 0x72, 0x9a, 0x81, 0x8d, 0x3c, 0x69, 0x66
},
{
0x9d, 0x7a, 0xac, 0x84, 0xe3, 0x70, 0x43, 0x0f,
0xa7, 0x83, 0x43, 0xc9, 0x04, 0xf8, 0x7d, 0x48
},
{
0xee, 0xfd, 0xab, 0x2a, 0x09, 0x44, 0x41, 0x6a,
0x91, 0xb0, 0x74, 0x24, 0xee, 0x35, 0xb1, 0x39
},
{
0x51, 0xf7, 0x1f, 0x67, 0x1a, 0x4a, 0x12, 0x37,
0x60, 0x3b, 0x68, 0x01, 0x20, 0x4f, 0xf3, 0xd9
},
};
const uint8_t expected_tag[][16] = {
{
0x06, 0x4f, 0xb5, 0x91, 0x12, 0x24, 0xb4, 0x24,
0x0b, 0xc2, 0x85, 0x59, 0x6a, 0x7c, 0x1f, 0xc9
},
{
0x45, 0xc2, 0xa8, 0xfe, 0xff, 0x49, 0x1f, 0x45,
0x8e, 0x29, 0x74, 0x41, 0xed, 0x9b, 0x54, 0x28
},
{
0xe1, 0xf9, 0x40, 0xfa, 0x29, 0x6f, 0x30, 0xae,
0xb6, 0x9b, 0x33, 0xdb, 0x8a, 0xf9, 0x70, 0xc4
},
{
0x22, 0xe1, 0x22, 0x34, 0x0c, 0x91, 0x0b, 0xcf,
0xa3, 0x42, 0xe0, 0x48, 0xe6, 0xfe, 0x2e, 0x28
},
{
0xfb, 0xfe, 0x5a, 0xed, 0x26, 0x5c, 0x5e, 0x66,
0x4e, 0xb2, 0x48, 0xce, 0xe9, 0x88, 0x1c, 0xe0
},
};
aes_gcm_test_cfg_t cfg = {
.output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL,
.iv = iv,
.iv_length = sizeof(iv),
.key = key,
.key_bits = 8 * sizeof(key),
.add_buf = add,
.add_length = sizeof(add),
.tag_len = 16
};
aes_gcm_test_expected_res_t res = {
};
for (int i = 0; i < sizeof(length) / sizeof(length[0]); i++) {
printf("Test AES-GCM with plaintext length = %d\n", length[i]);
uint8_t *input = heap_caps_malloc(length[i], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT(input != NULL || length[i] == 0);
memset(input, 0x36, length[i]);
cfg.plaintext = input;
cfg.plaintext_length = length[i];
res.expected_tag = expected_tag[i];
res.ciphertext_last_block = expected_last_block[i],
aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG);
aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH);
free(input);
}
}
TEST_CASE("mbedtls AES GCM - Different add messages", "[aes-gcm]")
{
const unsigned CALL_SZ = 160;
uint8_t iv[16];
uint8_t key[16];
uint8_t *input = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(input);
memset(input, 0x67, CALL_SZ);
memset(iv, 0xA2, sizeof(iv));
memset(key, 0x48, sizeof(key));
const uint8_t expected_last_block[] = {
0xcd, 0xb9, 0xad, 0x6f, 0xc9, 0x35, 0x21, 0x0d,
0xc9, 0x5d, 0xea, 0xd9, 0xf7, 0x1d, 0x43, 0xed
};
size_t add_len[] = {0, 10, 16, 500, 5000};
const uint8_t expected_tag[][16] = {
{
0xe3, 0x91, 0xad, 0x40, 0x96, 0xb7, 0x8c, 0x53,
0x4d, 0x15, 0x7d, 0x55, 0x15, 0xdf, 0x10, 0x69
},
{
0xc2, 0x38, 0x36, 0xe9, 0x12, 0x72, 0x5b, 0x31,
0x0c, 0xde, 0xb5, 0xc9, 0x8c, 0xa3, 0xcb, 0xe7
},
{
0x57, 0x10, 0x22, 0x91, 0x65, 0xfa, 0x89, 0xba,
0x0a, 0x3e, 0xc1, 0x7c, 0x93, 0x6e, 0x35, 0xac
},
{
0x3c, 0x28, 0x03, 0xc2, 0x14, 0x40, 0xec, 0xb6,
0x25, 0xfb, 0xdd, 0x55, 0xa0, 0xb2, 0x47, 0x7b
},
{
0xfa, 0x66, 0x4a, 0x97, 0x2d, 0x02, 0x32, 0x5b,
0x92, 0x94, 0xf1, 0x00, 0x1c, 0xfa, 0xe3, 0x07
}
};
aes_gcm_test_cfg_t cfg = {
.plaintext = input,
.plaintext_length = CALL_SZ,
.output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL,
.iv = iv,
.iv_length = sizeof(iv),
.key = key,
.key_bits = 8 * sizeof(key),
.tag_len = 16
};
aes_gcm_test_expected_res_t res = {
.ciphertext_last_block = expected_last_block,
};
for (int i = 0; i < sizeof(add_len) / sizeof(add_len[0]); i++) {
printf("Test AES-GCM with add length = %d\n", add_len[i]);
uint8_t *add = heap_caps_malloc(add_len[i], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT(add != NULL || add_len[i] == 0);
memset(add, 0x12, add_len[i]);
cfg.add_buf = add;
cfg.add_length = add_len[i];
res.expected_tag = expected_tag[i];
aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG);
aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH);
free(add);
}
free(input);
}
TEST_CASE("mbedtls AES GCM performance, start, update, ret", "[aes-gcm]")
{
const unsigned CALL_SZ = 16 * 3200;
mbedtls_gcm_context ctx;
float elapsed_usec;
unsigned char tag_buf[16];
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
uint8_t iv[16];
uint8_t key[16];
uint8_t aad[16];
size_t olen;
memset(iv, 0xEE, 16);
memset(key, 0x44, 16);
memset(aad, 0x76, 16);
// allocate internal memory
uint8_t *buf = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buf);
mbedtls_gcm_init(&ctx);
mbedtls_gcm_setkey( &ctx, cipher, key, 128);
ccomp_timer_start();
memset(buf, 0xAA, CALL_SZ);
TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, iv, sizeof(iv) ) == 0 );
TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, aad, sizeof(aad)) == 0 );
TEST_ASSERT(mbedtls_gcm_update( &ctx, buf, CALL_SZ, buf, CALL_SZ, &olen) == 0 );
TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf, 16 ) == 0 );
elapsed_usec = ccomp_timer_stop();
/* Sanity check: make sure the last ciphertext block matches
what we expect to see.
*/
const uint8_t expected_last_block[] = {
0xd4, 0x25, 0x88, 0xd4, 0x32, 0x52, 0x3d, 0x6f,
0xae, 0x49, 0x19, 0xb5, 0x95, 0x01, 0xde, 0x7d,
};
const uint8_t expected_tag[] = {
0xf5, 0x10, 0x1f, 0x21, 0x5b, 0x07, 0x0d, 0x3f,
0xac, 0xc9, 0xd0, 0x42, 0x45, 0xef, 0xc7, 0xfa,
};
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, buf + CALL_SZ - 16, 16);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf, 16);
free(buf);
// bytes/usec = MB/sec
float mb_sec = CALL_SZ / elapsed_usec;
printf("GCM encryption rate %.3fMB/sec\n", mb_sec);
#ifdef CONFIG_MBEDTLS_HARDWARE_GCM
// Don't put a hard limit on software AES performance
TEST_PERFORMANCE_CCOMP_GREATER_THAN(AES_GCM_UPDATE_THROUGHPUT_MBSEC, "%.3fMB/sec", mb_sec);
#endif
}
TEST_CASE("mbedtls AES GCM performance, crypt-and-tag", "[aes-gcm]")
{
const unsigned CALL_SZ = 16 * 3200;
mbedtls_gcm_context ctx;
float elapsed_usec;
unsigned char tag_buf[16] = {};
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
uint8_t iv[16];
uint8_t key[16];
uint8_t aad[16];
memset(iv, 0xEE, 16);
memset(key, 0x44, 16);
memset(aad, 0x76, 16);
// allocate internal memory
uint8_t *buf = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buf);
mbedtls_gcm_init(&ctx);
mbedtls_gcm_setkey( &ctx, cipher, key, 128);
memset(buf, 0xAA, CALL_SZ);
ccomp_timer_start();
mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_AES_ENCRYPT, CALL_SZ, iv, sizeof(iv), aad, sizeof(aad), buf, buf, 16, tag_buf);
elapsed_usec = ccomp_timer_stop();
/* Sanity check: make sure the last ciphertext block matches
what we expect to see.
*/
const uint8_t expected_last_block[] = {
0xd4, 0x25, 0x88, 0xd4, 0x32, 0x52, 0x3d, 0x6f,
0xae, 0x49, 0x19, 0xb5, 0x95, 0x01, 0xde, 0x7d,
};
const uint8_t expected_tag[] = {
0xf5, 0x10, 0x1f, 0x21, 0x5b, 0x07, 0x0d, 0x3f,
0xac, 0xc9, 0xd0, 0x42, 0x45, 0xef, 0xc7, 0xfa,
};
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, buf + CALL_SZ - 16, 16);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf, 16);
free(buf);
// bytes/usec = MB/sec
float mb_sec = CALL_SZ / elapsed_usec;
printf("GCM encryption rate %.3fMB/sec\n", mb_sec);
#ifdef CONFIG_MBEDTLS_HARDWARE_GCM
// Don't put a hard limit on software AES performance
TEST_PERFORMANCE_CCOMP_GREATER_THAN(AES_GCM_CRYPT_TAG_THROUGHPUT_MBSEC, "%.3fMB/sec", mb_sec);
#endif
}
TEST_CASE("mbedtls AES GCM - Combine different IV/Key/Plaintext/AAD lengths", "[aes-gcm]")
{
#define IV_BYTES_VALUE 0xA2
#define KEY_BYTES_VALUE 0x48
#define INPUT_BYTES_VALUE 0x36
#define ADD_BYTES_VALUE 0x12
uint8_t iv[16];
uint8_t key[32];
memset(iv, IV_BYTES_VALUE, sizeof(iv));
memset(key, KEY_BYTES_VALUE, sizeof(key));
/* Key length is: 16 bytes, 32 bytes */
size_t key_length[] = {16, 32};
/* IV length is: 12 bytes (standard), 16 bytes */
size_t iv_length[] = {12, 16};
/* Plaintext length is: a multiple of 16 bytes, a non-multiple of 16 bytes */
size_t length[] = {160, 321};
/* Add len is: 0, a multiple of 16 bytes, a non-multiple of 16 bytes */
size_t add_len[] = {0, 160, 321};
/*indexes: Key - IV - Plaintext */
const uint8_t expected_last_block[2][2][2][16] = {
{
/* 16 byte key */
{
{
0xa2, 0x1e, 0x23, 0x3c, 0xfc, 0x7c, 0xec, 0x9a,
0x91, 0xe5, 0xdb, 0x3a, 0xe5, 0x0c, 0x3f, 0xc2,
},
{
0xa8, 0xeb, 0x40, 0x9b, 0x7b, 0x87, 0x07,
0x68, 0x17, 0x5c, 0xc0, 0xb7, 0xb4, 0xb3, 0x81,
0xbe,
}
},
{
{
0x9c, 0xe8, 0xfc, 0x3e, 0x98, 0x64, 0x70, 0x5c,
0x98, 0x0c, 0xbb, 0x88, 0xa6, 0x4c, 0x12, 0xbc
},
{
0x8b, 0x66, 0xf5, 0xbc, 0x56, 0x59, 0xae,
0xf0, 0x9e, 0x5c, 0xdb, 0x6d, 0xfc, 0x1f, 0x2e,
0x00
}
},
},
{
/* 32 byte key */
{
{
0xde, 0xc2, 0xd3, 0xeb, 0x5e, 0x03, 0x53, 0x4b,
0x04, 0x0d, 0x63, 0xf1, 0xd8, 0x5b, 0x1f, 0x85,
},
{
0xb5, 0x53, 0x8e, 0xd3, 0xab, 0x10, 0xf1,
0x77, 0x41, 0x92, 0xea, 0xdd, 0xdd, 0x9e, 0x5d,
0x40,
}
},
{
{
0x3b, 0xc7, 0xf0, 0x3f, 0xba, 0x97, 0xbd, 0xa0,
0xa5, 0x48, 0xf3, 0x7a, 0xde, 0x23, 0x19, 0x7a,
},
{
0x57, 0xc7, 0x4d, 0xe3, 0x79, 0x5e, 0xbd,
0x0d, 0xd7, 0x6a, 0xef, 0x1f, 0x54, 0x29, 0xa6,
0xd7,
}
},
},
};
/*indexes: Key - IV - Plaintext - Add len*/
const uint8_t expected_tag[2][2][2][3][16] = {
{
{
{
// Plaintext 160 bytes
{
0x67, 0x92, 0xb1, 0x7f, 0x44, 0x1f, 0x95, 0xfb,
0x33, 0x76, 0x66, 0xb7, 0x4f, 0x3e, 0xec, 0x4d,
},
{
0xb1, 0x99, 0xed, 0x1b, 0x4e, 0x12, 0x87, 0x5e,
0xf4, 0xe3, 0x81, 0xd8, 0x96, 0x07, 0xda, 0xff,
},
{
0x73, 0x35, 0x0c, 0xf5, 0x70, 0x1e, 0xc0, 0x99,
0x34, 0xba, 0x1a, 0x50, 0x23, 0xac, 0x21, 0x33,
},
},
{
// Plaintext 321 bytes
{
0x2d, 0xf6, 0xd0, 0x7a, 0x75, 0x4d, 0x9d,
0xb5, 0x9d, 0x43, 0xbf, 0x57, 0x10, 0xa3, 0xff,
0x3d
},
{
0x06, 0x91, 0xe4, 0x38, 0x3a, 0xe1, 0x6e,
0x2d, 0x83, 0x68, 0x2e, 0xb0, 0x26, 0x2f, 0xe4,
0x78
},
{
0x1b, 0x58, 0x2f, 0x9b, 0xe9, 0xe0, 0xe0,
0x43, 0x83, 0x08, 0xec, 0x58, 0x3a, 0x78, 0xe9,
0x69,
}
}
},
{
{
// Plaintext 160 bytes
{
0x77, 0xe5, 0x2e, 0x2d, 0x94, 0xb8, 0x03, 0x61,
0x7a, 0xd5, 0x0c, 0x3c, 0x9c, 0x40, 0x92, 0x9b
},
{
0xa1, 0xee, 0x72, 0x49, 0x9e, 0xb5, 0x11, 0xc4,
0xbd, 0x40, 0xeb, 0x53, 0x45, 0x79, 0xa4, 0x29
},
{
0x63, 0x42, 0x93, 0xa7, 0xa0, 0xb9, 0x56, 0x03,
0x7d, 0x19, 0x70, 0xdb, 0xf0, 0xd2, 0x5f, 0xe5
},
},
{
// Plaintext 321 bytes
{
0x50, 0xa3, 0x79, 0xfc, 0x17, 0xb8, 0xf4,
0xf6, 0x14, 0xaa, 0x4a, 0xe7, 0xd4, 0xa0, 0xea,
0xee
},
{
0x7b, 0xc4, 0x4d, 0xbe, 0x58, 0x14, 0x07,
0x6e, 0x0a, 0x81, 0xdb, 0x00, 0xe2, 0x2c, 0xf1,
0xab
},
{
0x66, 0x0d, 0x86, 0x1d, 0x8b, 0x15, 0x89,
0x00, 0x0a, 0xe1, 0x19, 0xe8, 0xfe, 0x7b, 0xfc,
0xba
}
}
},
},
{
{
{
// Plaintext 160 bytes
{
0x04, 0x04, 0x15, 0xb1, 0xd3, 0x98, 0x15, 0x45,
0xa2, 0x44, 0xba, 0x4a, 0xde, 0xc2, 0x8d, 0xd6,
},
{
0x94, 0x3e, 0xc3, 0x5d, 0xdc, 0x42, 0xf6, 0x4c,
0x80, 0x15, 0xe4, 0xb9, 0x0b, 0xc9, 0x87, 0x01,
},
{
0x93, 0x6e, 0x26, 0x5b, 0x7e, 0x17, 0xc8, 0x73,
0x9b, 0x71, 0x31, 0x7a, 0x8b, 0x0e, 0x19, 0x89,
}
},
{
// Plaintext 321 bytes
{
0x99, 0x5e, 0x77, 0x28, 0x8b, 0xa8, 0x9b,
0xb3, 0x35, 0xc3, 0x99, 0x90, 0xd4, 0x5d, 0x63,
0xa7,
},
{
0xbc, 0xc2, 0x9f, 0xe6, 0x38, 0xef, 0xf5,
0x11, 0x76, 0x09, 0x17, 0x3a, 0xd4, 0x91, 0xee,
0xfe,
},
{
0x9f, 0xa6, 0x23, 0x5a, 0x4d, 0x78, 0xae,
0xce, 0x10, 0x35, 0xc1, 0x0c, 0x6e, 0xc2, 0x4e,
0xe8,
}
}
},
{
{
// Plaintext 160 bytes
{
0xfb, 0x74, 0x7e, 0x21, 0xf2, 0xe7, 0xe3, 0xf5,
0xfa, 0xc8, 0x23, 0xab, 0x54, 0x9a, 0xb9, 0xcf,
},
{
0x6b, 0x4e, 0xa8, 0xcd, 0xfd, 0x3d, 0x00, 0xfc,
0xd8, 0x99, 0x7d, 0x58, 0x81, 0x91, 0xb3, 0x18,
},
{
0x6c, 0x1e, 0x4d, 0xcb, 0x5f, 0x68, 0x3e, 0xc3,
0xc3, 0xfd, 0xa8, 0x9b, 0x01, 0x56, 0x2d, 0x90,
},
},
{
// Plaintext 321 bytes
{
0xcd, 0x49, 0x75, 0x4c, 0x2a, 0x62, 0x65,
0x6f, 0xfe, 0x14, 0xc2, 0x5d, 0x41, 0x07, 0x24,
0x55
},
{
0xe8, 0xd5, 0x9d, 0x82, 0x99, 0x25, 0x0b,
0xcd, 0xbd, 0xde, 0x4c, 0xf7, 0x41, 0xcb, 0xa9,
0x0c,
},
{
0xcb, 0xb1, 0x21, 0x3e, 0xec, 0xb2, 0x50,
0x12, 0xdb, 0xe2, 0x9a, 0xc1, 0xfb, 0x98, 0x09,
0x1a,
}
}
},
},
};
aes_gcm_test_cfg_t cfg = {
.output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL,
.tag_len = 16
};
for (int i_key = 0; i_key < sizeof(key_length) / sizeof(key_length[0]); i_key++) {
printf("Test AES-GCM with key length = %d\n", key_length[i_key]);
cfg.key = key;
cfg.key_bits = 8 * key_length[i_key];
for (int i_iv = 0; i_iv < sizeof(iv_length) / sizeof(iv_length[0]); i_iv++) {
printf("Test AES-GCM with IV length = %d\n", iv_length[i_iv]);
cfg.iv = iv;
cfg.iv_length = iv_length[i_iv];
for (int i_len = 0; i_len < sizeof(length) / sizeof(length[0]); i_len++) {
printf("Test AES-GCM with plaintext length = %d\n", length[i_len]);
uint8_t *input = heap_caps_malloc(length[i_len], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT(input != NULL || length[i_len] == 0);
memset(input, INPUT_BYTES_VALUE, length[i_len]);
cfg.plaintext = input;
cfg.plaintext_length = length[i_len];
aes_gcm_test_expected_res_t res = {0};
for (int i_add = 0; i_add < sizeof(add_len) / sizeof(add_len[0]); i_add++) {
printf("Test AES-GCM with add length = %d\n", add_len[i_add]);
uint8_t *add = heap_caps_malloc(add_len[i_add], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT(add != NULL || add_len[i_add] == 0);
memset(add, ADD_BYTES_VALUE, add_len[i_add]);
cfg.add_buf = add;
cfg.add_length = add_len[i_add];
res.expected_tag = expected_tag[i_key][i_iv][i_len][i_add];
res.ciphertext_last_block = expected_last_block[i_key][i_iv][i_len],
aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG);
free(add);
}
free(input);
}
}
}
}
TEST_CASE("mbedtls AES GCM - Different Authentication Tag lengths", "[aes-gcm]")
{
const unsigned CALL_SZ = 160;
uint8_t iv[16];
uint8_t key[16];
uint8_t aad[16];
uint8_t *input = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(input);
memset(input, 0x67, CALL_SZ);
memset(iv, 0xA2, sizeof(iv));
memset(key, 0x48, sizeof(key));
memset(aad, 0x12, sizeof(aad));
size_t tag_len[] = {4, 8, 11, 16};
const uint8_t expected_last_block[] = {
0xcd, 0xb9, 0xad, 0x6f, 0xc9, 0x35, 0x21, 0x0d,
0xc9, 0x5d, 0xea, 0xd9, 0xf7, 0x1d, 0x43, 0xed
};
const uint8_t expected_tag[16] = {
0x57, 0x10, 0x22, 0x91, 0x65, 0xfa, 0x89, 0xba,
0x0a, 0x3e, 0xc1, 0x7c, 0x93, 0x6e, 0x35, 0xac
};
aes_gcm_test_cfg_t cfg = {
.plaintext = input,
.plaintext_length = CALL_SZ,
.output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL,
.add_buf = aad,
.add_length = sizeof(aad),
.iv = iv,
.iv_length = sizeof(iv),
.key = key,
.key_bits = 8 * sizeof(key),
};
aes_gcm_test_expected_res_t res = {
.expected_tag = expected_tag,
.ciphertext_last_block = expected_last_block,
};
for (int i = 0; i < sizeof(tag_len) / sizeof(tag_len[0]); i++) {
printf("Test AES-GCM with tag length = %d\n", tag_len[i]);
cfg.tag_len = tag_len[i];
aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG);
aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH);
}
free(input);
}
#endif //CONFIG_MBEDTLS_HARDWARE_AES