esp-idf/components/sdmmc/sdmmc_common.c
Ivan Grokhotkov 516a4ba28d
fix(sdmmc): use correct argument for ACMD41 in SPI mode
ACMD41 argument is different between SD mode and SPI mode.
In SPI mode, the only non-zero bit may be the HCS bit. Unlike the SD
mode, the bits reflecting the host's OCR should be zero.
Previously, we used to set these bits the same way as for the SD mode.
This has caused certain cards to fail initializing, apparently their
controllers have checked the ACMD41 argument more strictly and refused
to finish initialization, resulting in an error such as

    sdmmc_common: sdmmc_init_ocr: send_op_cond (1) returned 0x107

(Note that this error may have other causes than the one fixed in
this commit. For example, if the card doesn't have a sufficient and
stable power supply, it may also fail to complete the internal
initialization process, and will never clear the busy flag in R1
response.)

Closes https://github.com/espressif/esp-idf/issues/6686
Closes https://github.com/espressif/esp-idf/issues/10542
2024-03-01 10:49:43 +01:00

346 lines
12 KiB
C

/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <inttypes.h>
#include "sdmmc_common.h"
static const char* TAG = "sdmmc_common";
esp_err_t sdmmc_init_ocr(sdmmc_card_t* card)
{
esp_err_t err;
/* In SPI mode, READ_OCR (CMD58) command is used to figure out which voltage
* ranges the card can support. This step is skipped since 1.8V isn't
* supported on the ESP32.
*/
uint32_t host_ocr = get_host_ocr(card->host.io_voltage);
/* In SPI mode, the only non-zero bit of ACMD41 is HCS (bit 30)
* In SD mode, bits 23:8 contain the supported voltage mask
*/
uint32_t acmd41_arg = 0;
if (!host_is_spi(card)) {
acmd41_arg = host_ocr;
}
if ((card->ocr & SD_OCR_SDHC_CAP) != 0) {
acmd41_arg |= SD_OCR_SDHC_CAP;
}
/* Send SEND_OP_COND (ACMD41) command to the card until it becomes ready. */
err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr);
/* If time-out, re-try send_op_cond as MMC */
if (err == ESP_ERR_TIMEOUT && !host_is_spi(card)) {
ESP_LOGD(TAG, "send_op_cond timeout, trying MMC");
card->is_mmc = 1;
err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr);
}
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_op_cond (1) returned 0x%x", __func__, err);
return err;
}
if (host_is_spi(card)) {
err = sdmmc_send_cmd_read_ocr(card, &card->ocr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: read_ocr returned 0x%x", __func__, err);
return err;
}
}
ESP_LOGD(TAG, "host_ocr=0x%" PRIx32 " card_ocr=0x%" PRIx32, host_ocr, card->ocr);
/* Clear all voltage bits in host's OCR which the card doesn't support.
* Don't touch CCS bit because in SPI mode cards don't report CCS in ACMD41
* response.
*/
host_ocr &= (card->ocr | (~SD_OCR_VOL_MASK));
ESP_LOGD(TAG, "sdmmc_card_init: host_ocr=%08" PRIx32 ", card_ocr=%08" PRIx32, host_ocr, card->ocr);
return ESP_OK;
}
esp_err_t sdmmc_init_cid(sdmmc_card_t* card)
{
esp_err_t err;
sdmmc_response_t raw_cid;
if (!host_is_spi(card)) {
err = sdmmc_send_cmd_all_send_cid(card, &raw_cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: all_send_cid returned 0x%x", __func__, err);
return err;
}
if (!card->is_mmc) {
err = sdmmc_decode_cid(raw_cid, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err);
return err;
}
} else {
/* For MMC, need to know CSD to decode CID. But CSD can only be read
* in data transfer mode, and it is not possible to read CID in data
* transfer mode. We temporiliy store the raw cid and do the
* decoding after the RCA is set and the card is in data transfer
* mode.
*/
memcpy(card->raw_cid, raw_cid, sizeof(sdmmc_response_t));
}
} else {
err = sdmmc_send_cmd_send_cid(card, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_cid returned 0x%x", __func__, err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_init_rca(sdmmc_card_t* card)
{
esp_err_t err;
err = sdmmc_send_cmd_set_relative_addr(card, &card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_relative_addr returned 0x%x", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_mmc_decode_cid(sdmmc_card_t* card)
{
esp_err_t err;
sdmmc_response_t raw_cid;
memcpy(raw_cid, card->raw_cid, sizeof(raw_cid));
err = sdmmc_mmc_decode_cid(card->csd.mmc_ver, raw_cid, &card->cid);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_csd(sdmmc_card_t* card)
{
assert(card->is_mem == 1);
/* Get and decode the contents of CSD register. Determine card capacity. */
esp_err_t err = sdmmc_send_cmd_send_csd(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err);
return err;
}
const size_t max_sdsc_capacity = UINT32_MAX / card->csd.sector_size + 1;
if (!(card->ocr & SD_OCR_SDHC_CAP) &&
card->csd.capacity > max_sdsc_capacity) {
ESP_LOGW(TAG, "%s: SDSC card reports capacity=%u. Limiting to %u.",
__func__, card->csd.capacity, max_sdsc_capacity);
card->csd.capacity = max_sdsc_capacity;
}
return ESP_OK;
}
esp_err_t sdmmc_init_select_card(sdmmc_card_t* card)
{
assert(!host_is_spi(card));
esp_err_t err = sdmmc_send_cmd_select_card(card, card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: select_card returned 0x%x", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_card_hs_mode(sdmmc_card_t* card)
{
esp_err_t err = ESP_ERR_NOT_SUPPORTED;
if (card->is_mem && !card->is_mmc) {
err = sdmmc_enable_hs_mode_and_check(card);
} else if (card->is_sdio) {
err = sdmmc_io_enable_hs_mode(card);
} else if (card->is_mmc){
err = sdmmc_mmc_enable_hs_mode(card);
}
if (err == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGD(TAG, "%s: host supports HS mode, but card doesn't", __func__);
card->max_freq_khz = SDMMC_FREQ_DEFAULT;
} else if (err != ESP_OK) {
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_host_bus_width(sdmmc_card_t* card)
{
int bus_width = 1;
if ((card->host.flags & SDMMC_HOST_FLAG_4BIT) &&
(card->log_bus_width == 2)) {
bus_width = 4;
} else if ((card->host.flags & SDMMC_HOST_FLAG_8BIT) &&
(card->log_bus_width == 3)) {
bus_width = 8;
}
ESP_LOGD(TAG, "%s: using %d-bit bus", __func__, bus_width);
if (bus_width > 1) {
esp_err_t err = (*card->host.set_bus_width)(card->host.slot, bus_width);
if (err != ESP_OK) {
ESP_LOGE(TAG, "host.set_bus_width failed (0x%x)", err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_init_host_frequency(sdmmc_card_t* card)
{
esp_err_t err;
assert(card->max_freq_khz <= card->host.max_freq_khz);
if (card->max_freq_khz > SDMMC_FREQ_PROBING) {
err = (*card->host.set_card_clk)(card->host.slot, card->max_freq_khz);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch bus frequency (0x%x)", err);
return err;
}
}
if (card->host.input_delay_phase != SDMMC_DELAY_PHASE_0) {
if (card->host.set_input_delay) {
err = (*card->host.set_input_delay)(card->host.slot, card->host.input_delay_phase);
if (err != ESP_OK) {
ESP_LOGE(TAG, "host.set_input_delay failed (0x%x)", err);
return err;
}
} else {
ESP_LOGE(TAG, "input phase delay feature isn't supported");
return ESP_ERR_NOT_SUPPORTED;
}
}
err = (*card->host.get_real_freq)(card->host.slot, &(card->real_freq_khz));
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to get real working frequency (0x%x)", err);
return err;
}
if (card->is_ddr) {
if (card->host.set_bus_ddr_mode == NULL) {
ESP_LOGE(TAG, "host doesn't support DDR mode or voltage switching");
return ESP_ERR_NOT_SUPPORTED;
}
err = (*card->host.set_bus_ddr_mode)(card->host.slot, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch bus to DDR mode (0x%x)", err);
return err;
}
}
return ESP_OK;
}
void sdmmc_flip_byte_order(uint32_t* response, size_t size)
{
assert(size % (2 * sizeof(uint32_t)) == 0);
const size_t n_words = size / sizeof(uint32_t);
for (int i = 0; i < n_words / 2; ++i) {
uint32_t left = __builtin_bswap32(response[i]);
uint32_t right = __builtin_bswap32(response[n_words - i - 1]);
response[i] = right;
response[n_words - i - 1] = left;
}
}
void sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card)
{
bool print_scr = false;
bool print_csd = false;
const char* type;
fprintf(stream, "Name: %s\n", card->cid.name);
if (card->is_sdio) {
type = "SDIO";
print_scr = true;
print_csd = true;
} else if (card->is_mmc) {
type = "MMC";
print_csd = true;
} else {
type = (card->ocr & SD_OCR_SDHC_CAP) ? "SDHC/SDXC" : "SDSC";
print_csd = true;
}
fprintf(stream, "Type: %s\n", type);
if (card->real_freq_khz == 0) {
fprintf(stream, "Speed: N/A\n");
} else {
const char *freq_unit = card->real_freq_khz < 1000 ? "kHz" : "MHz";
const float freq = card->real_freq_khz < 1000 ? card->real_freq_khz : card->real_freq_khz / 1000.0;
const char *max_freq_unit = card->max_freq_khz < 1000 ? "kHz" : "MHz";
const float max_freq = card->max_freq_khz < 1000 ? card->max_freq_khz : card->max_freq_khz / 1000.0;
fprintf(stream, "Speed: %.2f %s (limit: %.2f %s)%s\n", freq, freq_unit, max_freq, max_freq_unit, card->is_ddr ? ", DDR" : "");
}
fprintf(stream, "Size: %lluMB\n", ((uint64_t) card->csd.capacity) * card->csd.sector_size / (1024 * 1024));
if (print_csd) {
fprintf(stream, "CSD: ver=%d, sector_size=%d, capacity=%d read_bl_len=%d\n",
(int) (card->is_mmc ? card->csd.csd_ver : card->csd.csd_ver + 1),
card->csd.sector_size, card->csd.capacity, card->csd.read_block_len);
if (card->is_mmc) {
fprintf(stream, "EXT CSD: bus_width=%" PRIu32 "\n", (uint32_t) (1 << card->log_bus_width));
} else if (!card->is_sdio){ // make sure card is SD
fprintf(stream, "SSR: bus_width=%" PRIu32 "\n", (uint32_t) (card->ssr.cur_bus_width ? 4 : 1));
}
}
if (print_scr) {
fprintf(stream, "SCR: sd_spec=%d, bus_width=%d\n", card->scr.sd_spec, card->scr.bus_width);
}
}
esp_err_t sdmmc_fix_host_flags(sdmmc_card_t* card)
{
const uint32_t width_1bit = SDMMC_HOST_FLAG_1BIT;
const uint32_t width_4bit = SDMMC_HOST_FLAG_4BIT;
const uint32_t width_8bit = SDMMC_HOST_FLAG_8BIT;
const uint32_t width_mask = width_1bit | width_4bit | width_8bit;
int slot_bit_width = card->host.get_bus_width(card->host.slot);
if (slot_bit_width == 1 &&
(card->host.flags & (width_4bit | width_8bit))) {
card->host.flags &= ~width_mask;
card->host.flags |= width_1bit;
} else if (slot_bit_width == 4 && (card->host.flags & width_8bit)) {
if ((card->host.flags & width_4bit) == 0) {
ESP_LOGW(TAG, "slot width set to 4, but host flags don't have 4 line mode enabled; using 1 line mode");
card->host.flags &= ~width_mask;
card->host.flags |= width_1bit;
} else {
card->host.flags &= ~width_mask;
card->host.flags |= width_4bit;
}
}
return ESP_OK;
}
uint32_t sdmmc_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb)
{
if (card->is_mmc) {
return sdmmc_mmc_get_erase_timeout_ms(card, arg, erase_size_kb);
} else {
return sdmmc_sd_get_erase_timeout_ms(card, arg, erase_size_kb);
}
}