esp-idf/components/hal/cache_hal.c

302 lines
8.7 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include <stdint.h>
#include <stdbool.h>
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_attr.h"
#include "hal/assert.h"
#include "hal/cache_hal.h"
#include "hal/cache_types.h"
#include "hal/cache_ll.h"
#include "hal/mmu_hal.h"
#include "hal/mmu_ll.h"
#include "soc/soc_caps.h"
#include "rom/cache.h"
/*------------------------------------------------------------------------------
* Unified Cache Control
* See cache_hal.h for more info about these HAL APIs
* This file is in internal RAM.
* Now this file doesn't compile on ESP32
*----------------------------------------------------------------------------*/
/**
* Necessary hal contexts, could be maintained by upper layer in the future
*/
typedef struct {
bool i_autoload_en;
bool d_autoload_en;
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
// There's no register indicating if cache is enabled on these chips, use sw flag to save this state.
bool i_cache_enabled;
bool d_cache_enabled;
#endif
} cache_hal_state_t;
typedef struct {
cache_hal_state_t l1;
cache_hal_state_t l2;
} cache_hal_context_t;
static cache_hal_context_t ctx;
void s_cache_hal_init_ctx(void)
{
ctx.l1.d_autoload_en = cache_ll_is_cache_autoload_enabled(1, CACHE_TYPE_DATA, CACHE_LL_ID_ALL);
ctx.l1.i_autoload_en = cache_ll_is_cache_autoload_enabled(1, CACHE_TYPE_INSTRUCTION, CACHE_LL_ID_ALL);
ctx.l2.d_autoload_en = cache_ll_is_cache_autoload_enabled(2, CACHE_TYPE_DATA, CACHE_LL_ID_ALL);
ctx.l2.i_autoload_en = cache_ll_is_cache_autoload_enabled(2, CACHE_TYPE_INSTRUCTION, CACHE_LL_ID_ALL);
}
void cache_hal_init(void)
{
s_cache_hal_init_ctx();
if (CACHE_LL_LEVEL_EXT_MEM == 1) {
cache_ll_enable_cache(1, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en);
} else if (CACHE_LL_LEVEL_EXT_MEM == 2) {
cache_ll_enable_cache(2, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en);
}
cache_ll_l1_enable_bus(0, CACHE_LL_DEFAULT_DBUS_MASK);
cache_ll_l1_enable_bus(0, CACHE_LL_DEFAULT_IBUS_MASK);
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
cache_ll_l1_enable_bus(1, CACHE_LL_DEFAULT_DBUS_MASK);
cache_ll_l1_enable_bus(1, CACHE_LL_DEFAULT_IBUS_MASK);
#endif
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
ctx.l1.i_cache_enabled = 1;
ctx.l1.d_cache_enabled = 1;
ctx.l2.i_cache_enabled = 1;
ctx.l2.d_cache_enabled = 1;
#endif
}
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
void s_update_cache_state(uint32_t cache_level, cache_type_t type, bool en)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
switch (cache_level) {
case 1:
if (type == CACHE_TYPE_INSTRUCTION) {
ctx.l1.i_cache_enabled = en;
break;
} else if (type == CACHE_TYPE_DATA) {
ctx.l1.d_cache_enabled = en;
break;
} else if (type == CACHE_TYPE_ALL) {
ctx.l1.i_cache_enabled = en;
ctx.l1.d_cache_enabled = en;
break;
} else {
HAL_ASSERT(false);
break;
}
case 2:
if (type == CACHE_TYPE_INSTRUCTION) {
ctx.l2.i_cache_enabled = en;
break;
} else if (type == CACHE_TYPE_DATA) {
ctx.l2.d_cache_enabled = en;
break;
} else if (type == CACHE_TYPE_ALL) {
ctx.l2.i_cache_enabled = en;
ctx.l2.d_cache_enabled = en;
break;
} else {
HAL_ASSERT(false);
break;
}
default:
HAL_ASSERT(false);
break;
}
}
bool s_get_cache_state(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
bool enabled = false;
switch (cache_level) {
case 1:
if (type == CACHE_TYPE_INSTRUCTION) {
enabled = ctx.l1.i_cache_enabled;
break;
} else if (type == CACHE_TYPE_DATA) {
enabled = ctx.l1.d_cache_enabled;
break;
} else if (type == CACHE_TYPE_ALL) {
enabled = ctx.l1.i_cache_enabled;
enabled &= ctx.l1.d_cache_enabled;
break;
} else {
HAL_ASSERT(false);
break;
}
case 2:
if (type == CACHE_TYPE_INSTRUCTION) {
enabled = ctx.l2.i_cache_enabled;
break;
} else if (type == CACHE_TYPE_DATA) {
enabled = ctx.l2.d_cache_enabled;
break;
} else if (type == CACHE_TYPE_ALL) {
enabled = ctx.l2.i_cache_enabled;
enabled &= ctx.l2.d_cache_enabled;
break;
} else {
HAL_ASSERT(false);
break;
}
default:
HAL_ASSERT(false);
break;
}
return enabled;
}
#endif //#if CACHE_LL_ENABLE_DISABLE_STATE_SW
void cache_hal_disable(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
cache_ll_disable_cache(cache_level, type, CACHE_LL_ID_ALL);
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
s_update_cache_state(cache_level, type, false);
#endif
}
void cache_hal_enable(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
if (cache_level == 1) {
cache_ll_enable_cache(1, type, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en);
} else if (cache_level == 2) {
cache_ll_enable_cache(2, type, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en);
}
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
s_update_cache_state(cache_level, type, true);
#endif
}
void cache_hal_suspend(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
cache_ll_suspend_cache(cache_level, type, CACHE_LL_ID_ALL);
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
s_update_cache_state(cache_level, type, false);
#endif
}
void cache_hal_resume(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
if (cache_level == 1) {
cache_ll_resume_cache(1, type, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en);
} else if (cache_level == 2) {
cache_ll_resume_cache(2, type, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en);
}
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
s_update_cache_state(cache_level, type, true);
#endif
}
bool cache_hal_is_cache_enabled(uint32_t cache_level, cache_type_t type)
{
bool enabled = false;
#if CACHE_LL_ENABLE_DISABLE_STATE_SW
enabled = s_get_cache_state(cache_level, type);
#else
enabled = cache_ll_is_cache_enabled(type);
#endif //CACHE_LL_ENABLE_DISABLE_STATE_SW
return enabled;
}
bool cache_hal_vaddr_to_cache_level_id(uint32_t vaddr_start, uint32_t len, uint32_t *out_level, uint32_t *out_id)
{
if (!out_level || !out_id) {
return false;
}
return cache_ll_vaddr_to_cache_level_id(vaddr_start, len, out_level, out_id);
}
bool cache_hal_invalidate_addr(uint32_t vaddr, uint32_t size)
{
bool valid = false;
uint32_t cache_level = 0;
uint32_t cache_id = 0;
valid = cache_hal_vaddr_to_cache_level_id(vaddr, size, &cache_level, &cache_id);
if (valid) {
cache_ll_invalidate_addr(cache_level, CACHE_TYPE_ALL, cache_id, vaddr, size);
}
return valid;
}
#if SOC_CACHE_WRITEBACK_SUPPORTED
bool cache_hal_writeback_addr(uint32_t vaddr, uint32_t size)
{
bool valid = false;
uint32_t cache_level = 0;
uint32_t cache_id = 0;
valid = cache_hal_vaddr_to_cache_level_id(vaddr, size, &cache_level, &cache_id);
if (valid) {
cache_ll_writeback_addr(cache_level, CACHE_TYPE_DATA, cache_id, vaddr, size);
}
return valid;
}
#endif //#if SOC_CACHE_WRITEBACK_SUPPORTED
#if SOC_CACHE_FREEZE_SUPPORTED
void cache_hal_freeze(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
cache_ll_freeze_cache(cache_level, type, CACHE_LL_ID_ALL);
}
void cache_hal_unfreeze(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS));
cache_ll_unfreeze_cache(cache_level, type, CACHE_LL_ID_ALL);
}
#endif //#if SOC_CACHE_FREEZE_SUPPORTED
uint32_t cache_hal_get_cache_line_size(uint32_t cache_level, cache_type_t type)
{
HAL_ASSERT(cache_level <= CACHE_LL_LEVEL_NUMS);
uint32_t line_size = 0;
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
line_size = cache_ll_get_line_size(cache_level, type, CACHE_LL_ID_ALL);
#else
if (cache_level == CACHE_LL_LEVEL_EXT_MEM) {
line_size = cache_ll_get_line_size(cache_level, type, CACHE_LL_ID_ALL);
}
#endif
return line_size;
}